23 resultados para security in wireless sensor networks
em Digital Commons at Florida International University
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.
Resumo:
Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. ^ This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.^
Resumo:
The promise of Wireless Sensor Networks (WSNs) is the autonomous collaboration of a collection of sensors to accomplish some specific goals which a single sensor cannot offer. Basically, sensor networking serves a range of applications by providing the raw data as fundamentals for further analyses and actions. The imprecision of the collected data could tremendously mislead the decision-making process of sensor-based applications, resulting in an ineffectiveness or failure of the application objectives. Due to inherent WSN characteristics normally spoiling the raw sensor readings, many research efforts attempt to improve the accuracy of the corrupted or "dirty" sensor data. The dirty data need to be cleaned or corrected. However, the developed data cleaning solutions restrict themselves to the scope of static WSNs where deployed sensors would rarely move during the operation. Nowadays, many emerging applications relying on WSNs need the sensor mobility to enhance the application efficiency and usage flexibility. The location of deployed sensors needs to be dynamic. Also, each sensor would independently function and contribute its resources. Sensors equipped with vehicles for monitoring the traffic condition could be depicted as one of the prospective examples. The sensor mobility causes a transient in network topology and correlation among sensor streams. Based on static relationships among sensors, the existing methods for cleaning sensor data in static WSNs are invalid in such mobile scenarios. Therefore, a solution of data cleaning that considers the sensor movements is actively needed. This dissertation aims to improve the quality of sensor data by considering the consequences of various trajectory relationships of autonomous mobile sensors in the system. First of all, we address the dynamic network topology due to sensor mobility. The concept of virtual sensor is presented and used for spatio-temporal selection of neighboring sensors to help in cleaning sensor data streams. This method is one of the first methods to clean data in mobile sensor environments. We also study the mobility pattern of moving sensors relative to boundaries of sub-areas of interest. We developed a belief-based analysis to determine the reliable sets of neighboring sensors to improve the cleaning performance, especially when node density is relatively low. Finally, we design a novel sketch-based technique to clean data from internal sensors where spatio-temporal relationships among sensors cannot lead to the data correlations among sensor streams.
Resumo:
This dissertation proposed a self-organizing medium access control protocol (MAC) for wireless sensor networks (WSNs). The proposed MAC protocol, space division multiple access (SDMA), relies on sensor node position information and provides sensor nodes access to the wireless channel based on their spatial locations. SDMA divides a geographical area into space divisions, where there is one-to-one map between the space divisions and the time slots. Therefore, the MAC protocol requirement is the sensor node information of its position and a prior knowledge of the one-to-one mapping function. The scheme is scalable, self-maintaining, and self-starting. It provides collision-free access to the wireless channel for the sensor nodes thereby, guarantees delay-bounded communication in real time for delay sensitive applications. This work was divided into two parts: the first part involved the design of the mapping function to map the space divisions to the time slots. The mapping function is based on a uniform Latin square. A Uniform Latin square of order k = m 2 is an k x k square matrix that consists of k symbols from 0 to k-1 such that no symbol appears more than once in any row, in any column, or in any m x in area of main subsquares. The uniqueness of each symbol in the main subsquares presents very attractive characteristic in applying a uniform Latin square to time slot allocation problem in WSNs. The second part of this research involved designing a GPS free positioning system for position information. The system is called time and power based localization scheme (TPLS). TPLS is based on time difference of arrival (TDoA) and received signal strength (RSS) using radio frequency and ultrasonic signals to measure and detect the range differences from a sensor node to three anchor nodes. TPLS requires low computation overhead and no time synchronization, as the location estimation algorithm involved only a simple algebraic operation.
Resumo:
A wireless mesh network is a mesh network implemented over a wireless network system such as wireless LANs. Wireless Mesh Networks(WMNs) are promising for numerous applications such as broadband home networking, enterprise networking, transportation systems, health and medical systems, security surveillance systems, etc. Therefore, it has received considerable attention from both industrial and academic researchers. This dissertation explores schemes for resource management and optimization in WMNs by means of network routing and network coding.^ In this dissertation, we propose three optimization schemes. (1) First, a triple-tier optimization scheme is proposed for load balancing objective. The first tier mechanism achieves long-term routing optimization, and the second tier mechanism, using the optimization results obtained from the first tier mechanism, performs the short-term adaptation to deal with the impact of dynamic channel conditions. A greedy sub-channel allocation algorithm is developed as the third tier optimization scheme to further reduce the congestion level in the network. We conduct thorough theoretical analysis to show the correctness of our design and give the properties of our scheme. (2) Then, a Relay-Aided Network Coding scheme called RANC is proposed to improve the performance gain of network coding by exploiting the physical layer multi-rate capability in WMNs. We conduct rigorous analysis to find the design principles and study the tradeoff in the performance gain of RANC. Based on the analytical results, we provide a practical solution by decomposing the original design problem into two sub-problems, flow partition problem and scheduling problem. (3) Lastly, a joint optimization scheme of the routing in the network layer and network coding-aware scheduling in the MAC layer is introduced. We formulate the network optimization problem and exploit the structure of the problem via dual decomposition. We find that the original problem is composed of two problems, routing problem in the network layer and scheduling problem in the MAC layer. These two sub-problems are coupled through the link capacities. We solve the routing problem by two different adaptive routing algorithms. We then provide a distributed coding-aware scheduling algorithm. According to corresponding experiment results, the proposed schemes can significantly improve network performance.^
Resumo:
The tragic events of September 11th ushered a new era of unprecedented challenges. Our nation has to be protected from the alarming threats of adversaries. These threats exploit the nation's critical infrastructures affecting all sectors of the economy. There is the need for pervasive monitoring and decentralized control of the nation's critical infrastructures. The communications needs of monitoring and control of critical infrastructures was traditionally catered for by wired communication systems. These technologies ensured high reliability and bandwidth but are however very expensive, inflexible and do not support mobility and pervasive monitoring. The communication protocols are Ethernet-based that used contention access protocols which results in high unsuccessful transmission and delay. An emerging class of wireless networks, named embedded wireless sensor and actuator networks has potential benefits for real-time monitoring and control of critical infrastructures. The use of embedded wireless networks for monitoring and control of critical infrastructures requires secure, reliable and timely exchange of information among controllers, distributed sensors and actuators. The exchange of information is over shared wireless media. However, wireless media is highly unpredictable due to path loss, shadow fading and ambient noise. Monitoring and control applications have stringent requirements on reliability, delay and security. The primary issue addressed in this dissertation is the impact of wireless media in harsh industrial environment on the reliable and timely delivery of critical data. In the first part of the dissertation, a combined networking and information theoretic approach was adopted to determine the transmit power required to maintain a minimum wireless channel capacity for reliable data transmission. The second part described a channel-aware scheduling scheme that ensured efficient utilization of the wireless link and guaranteed delay. Various analytical evaluations and simulations are used to evaluate and validate the feasibility of the methodologies and demonstrate that the protocols achieved reliable and real-time data delivery in wireless industrial networks.
Resumo:
With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.
Resumo:
With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.
Resumo:
Wireless Sensor Networks (WSNs) are widely used for various civilian and military applications, and thus have attracted significant interest in recent years. This work investigates the important problem of optimal deployment of WSNs in terms of coverage and energy consumption. Five deployment algorithms are developed for maximal sensing range and minimal energy consumption in order to provide optimal sensing coverage and maximum lifetime. Also, all developed algorithms include self-healing capabilities in order to restore the operation of WSNs after a number of nodes have become inoperative. Two centralized optimization algorithms are developed, one based on Genetic Algorithms (GAs) and one based on Particle Swarm Optimization (PSO). Both optimization algorithms use powerful central nodes to calculate and obtain the global optimum outcomes. The GA is used to determine the optimal tradeoff between network coverage and overall distance travelled by fixed range sensors. The PSO algorithm is used to ensure 100% network coverage and minimize the energy consumed by mobile and range-adjustable sensors. Up to 30% - 90% energy savings can be provided in different scenarios by using the developed optimization algorithms thereby extending the lifetime of the sensor by 1.4 to 10 times. Three distributed optimization algorithms are also developed to relocate the sensors and optimize the coverage of networks with more stringent design and cost constraints. Each algorithm is cooperatively executed by all sensors to achieve better coverage. Two of our algorithms use the relative positions between sensors to optimize the coverage and energy savings. They provide 20% to 25% more energy savings than existing solutions. Our third algorithm is developed for networks without self-localization capabilities and supports the optimal deployment of such networks without requiring the use of expensive geolocation hardware or energy consuming localization algorithms. This is important for indoor monitoring applications since current localization algorithms cannot provide good accuracy for sensor relocation algorithms in such indoor environments. Also, no sensor redeployment algorithms, which can operate without self-localization systems, developed before our work.
Resumo:
Recent advances in electronic and computer technologies lead to wide-spread deployment of wireless sensor networks (WSNs). WSNs have wide range applications, including military sensing and tracking, environment monitoring, smart environments, etc. Many WSNs have mission-critical tasks, such as military applications. Thus, the security issues in WSNs are kept in the foreground among research areas. Compared with other wireless networks, such as ad hoc, and cellular networks, security in WSNs is more complicated due to the constrained capabilities of sensor nodes and the properties of the deployment, such as large scale, hostile environment, etc. Security issues mainly come from attacks. In general, the attacks in WSNs can be classified as external attacks and internal attacks. In an external attack, the attacking node is not an authorized participant of the sensor network. Cryptography and other security methods can prevent some of external attacks. However, node compromise, the major and unique problem that leads to internal attacks, will eliminate all the efforts to prevent attacks. Knowing the probability of node compromise will help systems to detect and defend against it. Although there are some approaches that can be used to detect and defend against node compromise, few of them have the ability to estimate the probability of node compromise. Hence, we develop basic uniform, basic gradient, intelligent uniform and intelligent gradient models for node compromise distribution in order to adapt to different application environments by using probability theory. These models allow systems to estimate the probability of node compromise. Applying these models in system security designs can improve system security and decrease the overheads nearly in every security area. Moreover, based on these models, we design a novel secure routing algorithm to defend against the routing security issue that comes from the nodes that have already been compromised but have not been detected by the node compromise detecting mechanism. The routing paths in our algorithm detour those nodes which have already been detected as compromised nodes or have larger probabilities of being compromised. Simulation results show that our algorithm is effective to protect routing paths from node compromise whether detected or not.
Resumo:
This research involves the design, development, and theoretical demonstration of models resulting in integrated misbehavior resolution protocols for ad hoc networked devices. Game theory was used to analyze strategic interaction among independent devices with conflicting interests. Packet forwarding at the routing layer of autonomous ad hoc networks was investigated. Unlike existing reputation based or payment schemes, this model is based on repeated interactions. To enforce cooperation, a community enforcement mechanism was used, whereby selfish nodes that drop packets were punished not only by the victim, but also by all nodes in the network. Then, a stochastic packet forwarding game strategy was introduced. Our solution relaxed the uniform traffic demand that was pervasive in other works. To address the concerns of imperfect private monitoring in resource aware ad hoc networks, a belief-free equilibrium scheme was developed that reduces the impact of noise in cooperation. This scheme also eliminated the need to infer the private history of other nodes. Moreover, it simplified the computation of an optimal strategy. The belief-free approach reduced the node overhead and was easily tractable. Hence it made the system operation feasible. Motivated by the versatile nature of evolutionary game theory, the assumption of a rational node is relaxed, leading to the development of a framework for mitigating routing selfishness and misbehavior in Multi hop networks. This is accomplished by setting nodes to play a fixed strategy rather than independently choosing a rational strategy. A range of simulations was carried out that showed improved cooperation between selfish nodes when compared to older results. Cooperation among ad hoc nodes can also protect a network from malicious attacks. In the absence of a central trusted entity, many security mechanisms and privacy protections require cooperation among ad hoc nodes to protect a network from malicious attacks. Therefore, using game theory and evolutionary game theory, a mathematical framework has been developed that explores trust mechanisms to achieve security in the network. This framework is one of the first steps towards the synthesis of an integrated solution that demonstrates that security solely depends on the initial trust level that nodes have for each other.^