10 resultados para robotic grasping

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intent of this work was to develop a mobile robotic platform that was controlled by a Palm Pilot PDA. Advances in consumer electronics are producing powerful yet small handheld devices. Some of these devices present quasi-PC capabilities for a fraction of the cost; furthermore, they are compact enough that they fit in all but the smallest of platforms. The platform prototype built for testing purposes has a differential-drive configuration to provide simple but agile movement control. The sensor package consisted of two infrared ranging sensors mounted on servomotors that provide a wide area of detection. Building such a platform involved selection of hardware, circuit integration and software development. The software suite selected to develop code for the Palm Pilot was CodeWarrior, a C compiler that can generate code in Palm-native PRC files.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In human society, people encounter various deontic conflicts every day. Deontic decisions are those that include moral, ethical, and normative aspects. Here, the concern is with deontic conflicts: decisions where all the alternatives lead to the violation of some norms. People think critically about these kinds of decisions. But, just ‘what’ they think about is not always clear. ^ People use certain estimating factors/criteria to balance the tradeoffs when they encounter deontic conflicts. It is unclear what subjective factors people use to make a deontic decision. An elicitation approach called the Open Factor Conjoint System is proposed, which applies an online elicitation methodology which is a combination of two well-know research methodologies: repertory grid and conjoint analysis. This new methodology is extended to be a web based application. It seeks to elicit additional relevant (subjective) factors from people, which affect deontic decisions. The relative importance and utility values are used for the development of a decision model to predict people’s decisions. ^ Fundamentally, this methodology was developed and intended to be applicable for a wide range of elicitation applications with minimal experimenter bias. Comparing with the traditional method, this online survey method reduces the limitation of time and space in data collection and this methodology can be applied in many fields. Two possible applications were addressed: robotic vehicles and the choice of medical treatment. In addition, this method can be applied to many research related disciplines in cross-cultural research due to its online ability with global capacity. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microstructure manipulation is a fundamental process to the study of biology and medicine, as well as to advance micro- and nano-system applications. Manipulation of microstructures has been achieved through various microgripper devices developed recently, which lead to advances in micromachine assembly, and single cell manipulation, among others. Only two kinds of integrated feedback have been demonstrated so far, force sensing and optical binary feedback. As a result, the physical, mechanical, optical, and chemical information about the microstructure under study must be extracted from macroscopic instrumentation, such as confocal fluorescence microscopy and Raman spectroscopy. In this research work, novel Micro-Opto-Electro-Mechanical-System (MOEMS) microgrippers are presented. These devices utilize flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection, or fluorescence. The microgrippers require external actuation which was accomplished by two methods: initially with a micrometer screw, and later with a piezoelectric actuator. Thanks to a novel actuation mechanism, the "fishbone", the gripping facets remain parallel within 1 degree. The design, simulation, fabrication, and characterization are systematically presented. The devices mechanical operation was verified by means of 3D finite element analysis simulations. Also, the optical performance and losses were simulated by the 3D-to-2D effective index (finite difference time domain FDTD) method as well as 3D Beam Propagation Method (3D-BPM). The microgrippers were designed to manipulate structures from submicron dimensions up to approximately 100 μm. The devices were implemented in SU-8 due to its suitable optical and mechanical properties. This work demonstrates two practical applications: the manipulation of single SKOV-3 human ovarian carcinoma cells, and the detection and identification of microparts tagged with a fluorescent "barcode" implemented with quantum dots. The novel devices presented open up new possibilities in the field of micromanipulation at the microscale, scalable to the nano-domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weakly electric fish produce a dual function electric signal that makes them ideal models for the study of sensory computation and signal evolution. This signal, the electric organ discharge (EOD), is used for communication and navigation. In some families of gymnotiform electric fish, the EOD is a dynamic signal that increases in amplitude during social interactions. Amplitude increase could facilitate communication by increasing the likelihood of being sensed by others or by impressing prospective mates or rivals. Conversely, by increasing its signal amplitude a fish might increase its sensitivity to objects by lowering its electrolocation detection threshold. To determine how EOD modulations elicited in the social context affect electrolocation, I developed an automated and fast method for measuring electroreception thresholds using a classical conditioning paradigm. This method employs a moving shelter tube, which these fish occupy at rest during the day, paired with an electrical stimulus. A custom built and programmed robotic system presents the electrical stimulus to the fish, slides the shelter tube requiring them to follow, and records video of their movements. I trained the electric fish of the genus Sternopygus was trained to respond to a resistive stimulus on this apparatus in 2 days. The motion detection algorithm correctly identifies the responses 91% of the time, with a false positive rate of only 4%. This system allows for a large number of trials, decreasing the amount of time needed to determine behavioral electroreception thresholds. This novel method enables the evaluation the evolutionary interplay between two conflicting sensory forces, social communication and navigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On my poster board I will display various samples of my student's writing to demonstrate their improved abilities due to my physical hand exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Research shows that plagiarism is a problem not only for English language learners but also for students whose first language is English. With the Internet and ease of copying and pasting information into a word document, plagiarism in on the rise (Maslen, 2003). Oftentimes, students are not aware they are doing something wrong. American students come into college with the cultural conditioning of knowing (perhaps not fully grasping) American academic standards (Gu & Brooks, 2007). International students have the additional disadvantage of not knowing the conventions, traditions, and values held in academic discourse (Gu & Brooks, 2007). Within American academic circles, plagiarism is considered “one of the worst crimes” a student can commit (Wheeler, 2008). However, outside the United States, plagiarism is culturally acceptable; in fact a moral transgression would be to not copy and paste the words of an expert (Wheeler, 2008). Most of the students in English for Academic Purposes (EAP) at Miami-Dade College are planning on continuing their education once they finish the EAP program so it is essential that they are exposed to the issue of plagiarism. A number of faculty who teach in subject areas have complained that incoming students do not have the skills needed to succeed; these skills include how to cite sources and reference material. As a result of this, the focus of this action research project was on incorporating and explaining plagiarism and providing a number of writing opportunities throughout the semester.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective in this work is to build a rapid and automated numerical design method that makes optimal design of robots possible. In this work, two classes of optimal robot design problems were specifically addressed: (1) When the objective is to optimize a pre-designed robot, and (2) when the goal is to design an optimal robot from scratch. In the first case, to reach the optimum design some of the critical dimensions or specific measures to optimize (design parameters) are varied within an established range. Then the stress is calculated as a function of the design parameter(s), the design parameter(s) that optimizes a pre-determined performance index provides the optimum design. In the second case, this work focuses on the development of an automated procedure for the optimal design of robotic systems. For this purpose, Pro/Engineer© and MatLab© software packages are integrated to draw the robot parts, optimize them, and then re-draw the optimal system parts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In human society, people encounter various deontic conflicts every day. Deontic decisions are those that include moral, ethical, and normative aspects. Here, the concern is with deontic conflicts: decisions where all the alternatives lead to the violation of some norms. People think critically about these kinds of decisions. But, just ‘what’ they think about is not always clear. People use certain estimating factors/criteria to balance the tradeoffs when they encounter deontic conflicts. It is unclear what subjective factors people use to make a deontic decision. An elicitation approach called the Open Factor Conjoint System is proposed, which applies an online elicitation methodology which is a combination of two well-know research methodologies: repertory grid and conjoint analysis. This new methodology is extended to be a web based application. It seeks to elicit additional relevant (subjective) factors from people, which affect deontic decisions. The relative importance and utility values are used for the development of a decision model to predict people’s decisions. Fundamentally, this methodology was developed and intended to be applicable for a wide range of elicitation applications with minimal experimenter bias. Comparing with the traditional method, this online survey method reduces the limitation of time and space in data collection and this methodology can be applied in many fields. Two possible applications were addressed: robotic vehicles and the choice of medical treatment. In addition, this method can be applied to many research related disciplines in cross-cultural research due to its online ability with global capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Waveguide Microgripper utilizes flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection or fluorescence. One of the simplest capabilities of the waveguide microgripper is to be able to detect the presence of a microobject between the microgripper facets by monitoring the transmitted intensity of light coupled through the facets. The intensity of coupled light is expected to drop when there is an object obstructing the path of light. The optical sensing and characterization function of the microgripper is a strong function of the optical power incident on the structure of interest. Hence it is important to understand the factors affecting the power distribution across the facet. The microgripper is also capable of detecting the fluorescence. This capability of microgripper is expected to have applications in medical, bio-medical and related fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microstructure manipulation is a fundamental process to the study of biology and medicine, as well as to advance micro- and nano-system applications. Manipulation of microstructures has been achieved through various microgripper devices developed recently, which lead to advances in micromachine assembly, and single cell manipulation, among others. Only two kinds of integrated feedback have been demonstrated so far, force sensing and optical binary feedback. As a result, the physical, mechanical, optical, and chemical information about the microstructure under study must be extracted from macroscopic instrumentation, such as confocal fluorescence microscopy and Raman spectroscopy. In this research work, novel Micro-Opto-Electro-Mechanical-System (MOEMS) microgrippers are presented. These devices utilize flexible optical waveguides as gripping arms, which provide the physical means for grasping a microobject, while simultaneously enabling light to be delivered and collected. This unique capability allows extensive optical characterization of the structure being held such as transmission, reflection, or fluorescence. The microgrippers require external actuation which was accomplished by two methods: initially with a micrometer screw, and later with a piezoelectric actuator. Thanks to a novel actuation mechanism, the “fishbone”, the gripping facets remain parallel within 1 degree. The design, simulation, fabrication, and characterization are systematically presented. The devices mechanical operation was verified by means of 3D finite element analysis simulations. Also, the optical performance and losses were simulated by the 3D-to-2D effective index (finite difference time domain FDTD) method as well as 3D Beam Propagation Method (3D-BPM). The microgrippers were designed to manipulate structures from submicron dimensions up to approximately 100 µm. The devices were implemented in SU-8 due to its suitable optical and mechanical properties. This work demonstrates two practical applications: the manipulation of single SKOV-3 human ovarian carcinoma cells, and the detection and identification of microparts tagged with a fluorescent “barcode” implemented with quantum dots. The novel devices presented open up new possibilities in the field of micromanipulation at the microscale, scalable to the nano-domain.