9 resultados para risk-assessment strategies
em Digital Commons at Florida International University
Resumo:
Pesticide monitoring in St. Lucie County by various local, state and federal agencies has indicated consistent residues of several pesticides, including ethion and bromacil. Although pesticides have long been known to pose a threat to non-target species and much background monitoring has been done, no pesticide aquatic risk assessment has been done in this geographical area. Several recognized United States Environmental Protection Agency (USEPA) methods of quantifying risk are employed here to include hazard quotients (HQ) and probabilistic modeling with sensitivity analysis. These methods are employed to characterize potential impacts to aquatic biota of the C-25 Canal and the Indian River Lagoon (in St. Lucie County, Florida) based on current agricultural pesticide use and drainage patterns. The model used in the analysis incorporates available physical-chemical property data, local hydrology, ecosystem information, and pesticide use practices. HQ's, probabilistic distributions, and field sample analyses resulted in high levels of concern (LOCs), which usually indicates a need for regulatory action, including restrictions on use, or cancellation. ^
Resumo:
Does your organization integrate the management of risk and opportunity Have you evaluated non-traditional risk exposures? These are critically important questions as today's increasingly complex business environment exposes hospitality companies to numerous risks.
Resumo:
This study was conducted to identify Korean-Americans' knowledge, perceptions, and efficacy (both self and response) relating to HIV/AIDS, as well as safer sex practices. Age, gender, education, Confucianism, religion, and acculturation were also examined for potential relationships with the main variables. A total of 200 Korean-Americans in Dade County, Florida, participated in the study. The mean age of the participants was 32.6 years (range 19-55). The AIDS Risk Assessment Questionnaire (ARA-Q) derived from the AIDS Risk Measurement Study Questionnaire (ARMS-Q) and the Risk Behavior Assessment (RBA) were used for data collection. The overall mean score of HIV/AIDS knowledge was 12.3 (77%) out of a possible 16. Knowledge, and perceptions about HIV/AIDS were not related to safer sex practices. Significant correlations between attitudes toward condoms and the frequency of condom use during oral intercourse were evident. Male subjects reported more sexual partners in their lifetime and more frequent condom use during vaginal intercourse during the last year than female subjects. The number of sexual partners in the last year was not related to perceived HIV/AIDS susceptibility and response-efficacy among men or women, but response-efficacy positively correlated to frequency of condom use among both genders. Acculturation scores were positively correlated with the number of sexual partners and the frequency of condom use during vaginal intercourse for men and women. Further research is needed to determine factors that may increase the cultural relevance of AIDS prevention strategies to the Korean-American community. The findings of this study may be used as a basis for designing culturally-sensitive HIV/AIDS education programs to reach various segments of this ethnic community. ^
Resumo:
The present study identified and compared Coronary Heart Disease (CHD) risk factors quantified as “CHD risk point standards” (CHDRPS) among tri-ethnic (White non-Hispanic [WNH], Hispanic [H], and Black non-Hispanic [BNH]) college students. All 300 tri-ethnic subjects completed the Cardiovascular Risk Assessment Instruments and had blood pressure readings recorded on three occasions. The Bioelectrical Impedance Analysis (BIA) was used to measure body composition. Students' knowledge of CHD risk factors was also measured. In addition, a 15 ml fasting blood sample was collected from 180 subjects and blood lipids and Homocysteine (tHcy) levels were measured. Data were analyzed by gender and ethnicity using one-way Analysis of Variance (ANOVA) with Bonferroni's pairwise mean comparison procedure, Pearson correlation, and Chi-square test with follow-up Bonferroni's Chi-square tests. ^ The mean score of CHDRPS for all subjects was 19.15 ± 6.79. Assigned to the CHD risk category, college students were below-average risk of developing CHD. Males scored significantly (p < 0.013) higher for CHD risk than females, and BNHs scored significantly (p < 0.033) higher than WNHs. High consumption of dietary fat saturated fat and cholesterol resulted in a high CHDRPS among H males and females and WNH females. High alcohol consumption resulted in a high CHDRPS among all subjects. Mean tHcy ± SD of all subjects was 6.33 ± 3. 15 μmol/L. Males had significantly (p < 0.001) higher tHcy than females. Black non-Hispanic females and H females had significantly (p < 0.003) lower tHcy than WNH females. Positive associations were found between tHcy levels and CHDRPS among females (p < 0.001), Hs (p < 0.001), H males (p < 0.049), H females (p < 0.009), and BNH females (p < 0.005). Significant positive correlations were found between BMI levels and CHDRPS in males (p < 0.001), females (p < 0.001), WNHs (p < 0.008), Hs (p < 0.001), WNH males (p < 0.024), H males (p < 0.004) and H females (p < 0.001). The mean knowledge of CHD questions of all subjects was 71.70 ± 7.92 out of 100. The mean knowledge of CHD was significantly higher for WNH males (p < 0.039) than BNH males. A significant inverse correlation (r = 0.392, p < 0.032) was found between the CHD knowledge and CHDRPS in WNH females. The researcher's findings indicate strong gender and ethnic differences in CHD risk factors among the college-age population. ^
Resumo:
A major consequence of contamination at the local level’s population as it relates to environmental health and environmental engineering is childhood lead poisoning. Environmental contamination is one of the pressing environmental concerns facing the world today. Current approaches often focus on large contaminated industrial size sites that are designated by regulatory agencies for site remediation. Prior to this study, there were no known published studies conducted at the local and smaller scale, such as neighborhoods, where often much of the contamination is present to remediate. An environmental health study of local lead-poisoning data in Liberty City, Little Haiti and eastern Little Havana in Miami-Dade County, Florida accounted for a disproportionately high number of the county’s reported childhood lead poisoning cases. An engineering system was developed and designed for a comprehensive risk management methodology that is distinctively applicable to the geographical and environmental conditions of Miami-Dade County, Florida. Furthermore, a scientific approach for interpreting environmental health concerns, while involving detailed environmental engineering control measures and methods for site remediation in contained media was developed for implementation. Test samples were obtained from residents and sites in those specific communities in Miami-Dade County, Florida (Gasana and Chamorro 2002). Currently lead does not have an Oral Assessment, Inhalation Assessment, and Oral Slope Factor; variables that are required to run a quantitative risk assessment. However, various institutional controls from federal agencies’ standards and regulation for contaminated lead in media yield adequate maximum concentration limits (MCLs). For this study an MCL of .0015 (mg/L) was used. A risk management approach concerning contaminated media involving lead demonstrates that the linkage of environmental health and environmental engineering can yield a feasible solution.
Resumo:
Subtitle D of the Resource Conservation and Recovery Act (RCRA) requires a post closure period of 30 years for non hazardous wastes in landfills. Post closure care (PCC) activities under Subtitle D include leachate collection and treatment, groundwater monitoring, inspection and maintenance of the final cover, and monitoring to ensure that landfill gas does not migrate off site or into on site buildings. The decision to reduce PCC duration requires exploration of a performance based methodology to Florida landfills. PCC should be based on whether the landfill is a threat to human health or the environment. Historically no risk based procedure has been available to establish an early end to PCC. Landfill stability depends on a number of factors that include variables that relate to operations both before and after the closure of a landfill cell. Therefore, PCC decisions should be based on location specific factors, operational factors, design factors, post closure performance, end use, and risk analysis. The question of appropriate PCC period for Florida’s landfills requires in depth case studies focusing on the analysis of the performance data from closed landfills in Florida. Based on data availability, Davie Landfill was identified as case study site for a case by case analysis of landfill stability. The performance based PCC decision system developed by Geosyntec Consultants was used for the assessment of site conditions to project PCC needs. The available data for leachate and gas quantity and quality, ground water quality, and cap conditions were evaluated. The quality and quantity data for leachate and gas were analyzed to project the levels of pollutants in leachate and groundwater in reference to maximum contaminant level (MCL). In addition, the projected amount of gas quantity was estimated. A set of contaminants (including metals and organics) were identified as contaminants detected in groundwater for health risk assessment. These contaminants were selected based on their detection frequency and levels in leachate and ground water; and their historical and projected trends. During the evaluations a range of discrepancies and problems that related to the collection and documentation were encountered and possible solutions made. Based on the results of PCC performance integrated with risk assessment, projection of future PCC monitoring needs and sustainable waste management options were identified. According to these results, landfill gas monitoring can be terminated, leachate and groundwater monitoring for parameters above MCL and surveying of the cap integrity should be continued. The parameters which cause longer monitoring periods can be eliminated for the future sustainable landfills. As a conclusion, 30 year PCC period can be reduced for some of the landfill components based on their potential impacts to human health and environment (HH&E).
Resumo:
Awareness of extreme high tide flooding in coastal communities has been increasing in recent years, reflecting growing concern over accelerated sea level rise. As a low-lying, urban coastal community with high value real estate, Miami often tops the rankings of cities worldwide in terms of vulnerability to sea level rise. Understanding perceptions of these changes and how communities are dealing with the impacts reveals much about vulnerability to climate change and the challenges of adaptation. ^ This empirical study uses an innovative mixed-methods approach that combines ethnographic observations of high tide flooding, qualitative interviews and analysis of tidal data to reveal coping strategies used by residents and businesses as well as perceptions of sea level rise and climate change, and to assess the relationship between measurable sea levels and perceptions of flooding. I conduct a case study of Miami Beach's storm water master planning process which included sea level rise projections, one of the first in the nation to do so, that reveals the different and sometimes competing logics of planners, public officials, activists, residents and business interests with regards to climate change adaptation. By taking a deeply contextual account of hazards and adaptation efforts in a local area I demonstrate how this approach can be effective at shedding light on some of the challenges posed by anthropogenic climate change and accelerated rates of sea level rise. ^ The findings highlight challenges for infrastructure planning in low-lying, urban coastal areas, and for individual risk assessment in the context of rapidly evolving discourse about the threat of sea level rise. Recognition of the trade-offs and limits of incremental adaptation strategies point to transformative approaches, at the same time highlighting equity concerns in adaptation governance and planning. This new impact assessment method contributes to the integration of social and physical science approaches to climate change, resulting in improved understanding of socio-ecological vulnerability to environmental change.^
Resumo:
Subtitle D of the Resource Conservation and Recovery Act (RCRA) requires a post closure period of 30 years for non hazardous wastes in landfills. Post closure care (PCC) activities under Subtitle D include leachate collection and treatment, groundwater monitoring, inspection and maintenance of the final cover, and monitoring to ensure that landfill gas does not migrate off site or into on site buildings. The decision to reduce PCC duration requires exploration of a performance based methodology to Florida landfills. PCC should be based on whether the landfill is a threat to human health or the environment. Historically no risk based procedure has been available to establish an early end to PCC. Landfill stability depends on a number of factors that include variables that relate to operations both before and after the closure of a landfill cell. Therefore, PCC decisions should be based on location specific factors, operational factors, design factors, post closure performance, end use, and risk analysis. The question of appropriate PCC period for Florida’s landfills requires in depth case studies focusing on the analysis of the performance data from closed landfills in Florida. Based on data availability, Davie Landfill was identified as case study site for a case by case analysis of landfill stability. The performance based PCC decision system developed by Geosyntec Consultants was used for the assessment of site conditions to project PCC needs. The available data for leachate and gas quantity and quality, ground water quality, and cap conditions were evaluated. The quality and quantity data for leachate and gas were analyzed to project the levels of pollutants in leachate and groundwater in reference to maximum contaminant level (MCL). In addition, the projected amount of gas quantity was estimated. A set of contaminants (including metals and organics) were identified as contaminants detected in groundwater for health risk assessment. These contaminants were selected based on their detection frequency and levels in leachate and ground water; and their historical and projected trends. During the evaluations a range of discrepancies and problems that related to the collection and documentation were encountered and possible solutions made. Based on the results of PCC performance integrated with risk assessment, projection of future PCC monitoring needs and sustainable waste management options were identified. According to these results, landfill gas monitoring can be terminated, leachate and groundwater monitoring for parameters above MCL and surveying of the cap integrity should be continued. The parameters which cause longer monitoring periods can be eliminated for the future sustainable landfills. As a conclusion, 30 year PCC period can be reduced for some of the landfill components based on their potential impacts to human health and environment (HH&E).
Resumo:
An automated on-line SPE-LC-MS/MS method was developed for the quantitation of multiple classes of antibiotics in environmental waters. High sensitivity in the low ng/L range was accomplished by using large volume injections with 10-mL of sample. Positive confirmation of analytes was achieved using two selected reaction monitoring (SRM) transitions per antibiotic and quantitation was performed using an internal standard approach. Samples were extracted using online solid phase extraction, then using column switching technique; extracted samples were immediately passed through liquid chromatography and analyzed by tandem mass spectrometry. The total run time per each sample was 20 min. The statistically calculated method detection limits for various environmental samples were between 1.2 and 63 ng/L. Furthermore, the method was validated in terms of precision, accuracy and linearity. The developed analytical methodology was used to measure the occurrence of antibiotics in reclaimed waters (n=56), surface waters (n=53), ground waters (n=8) and drinking waters (n=54) collected from different parts of South Florida. In reclaimed waters, the most frequently detected antibiotics were nalidixic acid, erythromycin, clarithromycin, azithromycin trimethoprim, sulfamethoxazole and ofloxacin (19.3-604.9 ng/L). Detection of antibiotics in reclaimed waters indicates that they can’t be completely removed by conventional wastewater treatment process. Furthermore, the average mass loads of antibiotics released into the local environment through reclaimed water were estimated as 0.248 Kg/day. Among the surface waters samples, Miami River (reaching up to 580 ng/L) and Black Creek canal (up to 124 ng/L) showed highest concentrations of antibiotics. No traces of antibiotics were found in ground waters. On the other hand, erythromycin (monitored as anhydro erythromycin) was detected in 82% of the drinking water samples (n.d-66 ng/L). The developed approach is suitable for both research and monitoring applications. Major metabolites of antibiotics in reclaimed wates were identified and quantified using high resolution benchtop Q-Exactive orbitrap mass spectrometer. A phase I metabolite of erythromycin was tentatively identified in full scan based on accurate mass measurement. Using extracted ion chromatogram (XIC), high resolution data-dependent MS/MS spectra and metabolic profiling software the metabolite was identified as desmethyl anhydro erythromycin with molecular formula C36H63NO12 and m/z 702.4423. The molar concentration of the metabolite to erythromycin was in the order of 13 %. To my knowledge, this is the first known report on this metabolite in reclaimed water. Another compound acetyl-sulfamethoxazole, a phase II metabolite of sulfamethoxazole was also identified in reclaimed water and mole fraction of the metabolite represent 36 %, of the cumulative sulfamethoxazole concentration. The results were illustrating the importance to include metabolites also in the routine analysis to obtain a mass balance for better understanding of the occurrence, fate and distribution of antibiotics in the environment. Finally, all the antibiotics detected in reclaimed and surface waters were investigated to assess the potential risk to the aquatic organisms. The surface water antibiotic concentrations that represented the real time exposure conditions revealed that the macrolide antibiotics, erythromycin, clarithromycin and tylosin along with quinolone antibiotic, ciprofloxacin were suspected to induce high toxicity to aquatic biota. Preliminary results showing that, among the antibiotic groups tested, macrolides posed the highest ecological threat, and therefore, they may need to be further evaluated with, long-term exposure studies considering bioaccumulation factors and more number of species selected. Overall, the occurrence of antibiotics in aquatic environment is posing an ecological health concern.