4 resultados para riparian

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isla del Coco (Cocos Island) is a small volcanic island located in the Pacific 500 km west of Costa Rica. Three collecting trips to Isla del Coco, in addition to herbarium research, were completed in order to assess the floristic diversity of the island. The current flora of Isla del Coco contains 262 plant species of which 37 (19.4%) are endemic. This study reports 58 species as new to the island. Seventy-one species (27.1%) were identified as introduced by humans. In addition, five potentially invasive plant species are identified. Seven vegetation types are identified on the island: bayshore, coastal cliff, riparian, low elevation humid forest, high elevation cloud forest, landslide and islet. ^ The biogeographic affinities of the native and endemic species are with Central America/northern South America and to a lesser extent, the Caribbean. Endemic species in the genus Epidendrum were investigated to determine whether an insular radiation event had produced two species found on Isla del Coco. Phylogenetic analysis of the internal transcribed spacer (ITS) of nuclear ribosomal DNA was not able to disprove that the endemic species in this genus are not sister species. Molecular biogeographic analyses of ITS sequence data determined that the Isla del Coco endemic species in the genera Epidendrum, Pilea and Psychotria are most closely related to Central American/northern South American taxa. No biogeographical links were found between the floras of Isla del Coco and the Galápagos Islands. ^ The native and endemic plant diversity of Isla del Coco is threatened with habitat degradation by introduced pigs and deer, and to a lesser extent, by exotic plant species. The IUCN Red List and RAREplants criteria were used to assess the extinction threat for the 37 endemic plant taxa found on the island. All of the endemic species are considered threatened with extinction at the Critically Endangered (CR) by the IUCN criteria or either CR or Endangered (EN) using RAREplants methodology. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Freshwater ecosystems have been recognized as important components of the global carbon cycle, and the flux of organic matter (OM) from freshwater to marine environments can significantly affect estuarine and coastal productivity. The focus of this study was the assessment of carbon dynamics in two aquatic environments, namely the Florida Everglades and small prairie streams in Kansas, with the aim of characterizing the biogeochemistry of OM. In the Everglades, particulate OM (POM) is mostly found as a layer of flocculent material (floc). While floc is believed to be the main energy source driving trophic dynamics in this oligotrophic wetland, not much is known about its biogeochemistry. The objective of this study was to determine the origin/sources of OM in floc using biomarkers and pigment-based chemotaxonomy to assess specific biomass contributions to this material, on a spatial (freshwater marshes vs. mangrove fringe) and seasonal (wet vs. dry) scales. It was found that floc OM is derived from the local vegetation (mainly algal components and macrophyte litter) and its composition is controlled by seasonal drivers of hydrology and local biomass productivity. Photo-reactivity experiments showed that light exposure on floc resulted in photo-dissolution of POC with the generation of significant amounts of both dissolved OM (DOM) and nutrients (N & P), potentially influencing nutrient dynamics in this ecosystem. The bio-reactivity experiments determined as the amount and rate of CO2 evolution during incubation were found to vary on seasonal and spatial scales and were highly influenced by phosphorus limitation. Not much is known on OM dynamics in small headwater streams. The objective of this study was to determine carbon dynamics in sediments from intermittent prairie streams, characterized by different vegetation cover for their watershed (C4 grasses) vs. riparian zone (C3 plants). In this study sedimentary OM was characterized using a biomarker and compound specific carbon stable isotope approach. It was found that the biomarker composition of these sediments is dominated by higher plant inputs from the riparian zone, although inputs from adjacent prairie grasses were also apparent. Conflicting to some extent with the River Continuum Concept, sediments of the upper reaches contained more degraded OM, while the lower reaches were enriched in fresh material deriving from higher plants and plankton sources as a result of hydrological regimes and particle sorting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this study was to determine the instantaneous vs. integrated effects of waste on the water quality of the Chorobamba River. I sampled 9 stations upstream and downstream of the Town of Oxapampa, Peru during the dry season (June-August) of 2004. I measured in-situ parameters such as pH, DO, temperature, etc. as well as vegetation, riverbank erosion, nutrients (N03, NH4, P04), coliform bacteria and macroinvertebrate communities to determine the current conditions of the river, as well as the integrated effects of pollution. Although water quality conditions remained stable, high fecal coliform concentrations and macroinvertebrate communities indicate deterioration in river health over a longer period of time. If riparian areas along the Chorobamba continue to decrease and if inputs of sewage into the rivers continue to increase, as a function of population, then, conditions will continue to deteriorate in the coming years.