5 resultados para rim
em Digital Commons at Florida International University
Resumo:
The spectral distribution of solar radiation was studied under different sky conditions during a 15- month period in Miami, Florida (USA), and over a latitudinal gradient at solar maximum. Spectroradiometric scans were characterized for total irradiance (300- 3000 nm) and the relative energetic and photon contributions of the following wavelength regions: UV-B (300-320nm); UV-A (320-400nm); B (400-500rim); PAR (400-700 nm); R (600-700 nm); and FR (728- 732 rim). Notable results include: (i) significantly higher UV-A energy fluxes than currently in use for laboratory experiments involving the biological effects of this bandwidth (values ranged from 33.6 to 55.4 W/m 2 in Miami over the year); (ii) marked diurnal shifts in B:R and R:FR, with elevated R:FR values in early morning: (iii) a strong correlation between R: FR and atmospheric water content; and (iv) unusually high PAR values under direct sunlight with cloudy skies (2484 ~tmot/2 per s).
Resumo:
The Deccan Trap basalts are the remnants of a massive series of lava flows that erupted at the K/T boundary and covered 1-2 million km2 of west-central India. This eruptive event is of global interest because of its possible link to the major mass extinction event, and there is much debate about the duration of this massive volcanic event. In contrast to isotopic or paleomagnetic dating methods, I explore an alternative approach to determine the lifecycle of the magma chambers that supplied the lavas, and extend the concept to obtain a tighter constraint on Deccan’s duration. My method relies on extracting time information from elemental and isotopic diffusion across zone boundaries in individual crystals. I determined elemental and Sr-isotopic variations across abnormally large (2-5 cm) plagioclase crystals from the Thalghat and Kashele “Giant Plagioclase Basalts” from the lowermost Jawhar and Igatpuri Formations respectively in the thickest Western Ghats section near Mumbai. I also obtained bulk rock major, trace and rare earth element chemistry of each lava flow from the two formations. Thalghat flows contain only 12% zoned crystals, with 87 Sr/86Sr ratios of 0.7096 in the core and 0.7106 in the rim, separated by a sharp boundary. In contrast, all Kashele crystals have a wider range of 87Sr/86Sr values, with multiple zones. Geochemical modeling of the data suggests that the two types of crystals grew in distinct magmatic environments. Modeling intracrystalline diffusive equilibration between the core and rim of Thalghat crystals led me to obtain a crystal growth rate of 2.03x10-10 cm/s and a residence time of 780 years for the crystals in the magma chamber(s). Employing some assumptions based on field and geochronologic evidence, I extrapolated this residence time to the entire Western Ghats and obtained an estimate of 25,000–35,000 years for the duration of Western Ghats volcanism. This gave an eruptive rate of 30–40 km3/yr, which is much higher than any presently erupting volcano. This result will remain speculative until a similarly detailed analytical-modeling study is performed for the rest of the Western Ghats formations.
Resumo:
Established as a National Park in 1980, Biscayne National Park (BISC) comprises an area of nearly 700 km2 , of which most is under water. The terrestrial portions of BISC include a coastal strip on the south Florida mainland and a set of Key Largo limestone barrier islands which parallel the mainland several kilometers offshore and define the eastern rim of Biscayne Bay. The upland vegetation component of BISC is embedded within an extensive coastal wetland network, including an archipelago of 42 mangrove-dominated islands with extensive areas of tropical hardwood forests or hammocks. Several databases and vegetation maps describe these terrestrial communities. However, these sources are, for the most part, outdated, incomplete, incompatible, or/and inaccurate. For example, the current, Welch et al. (1999), vegetation map of BISC is nearly 10 years old and represents the conditions of Biscayne National Park shortly after Hurricane Andrew (August 24, 1992). As a result, a new terrestrial vegetation map was commissioned by The National Park Service Inventory and Monitoring Program South Florida / Caribbean Network.
Resumo:
Melt inclusions are minute magma bodies trapped within growing crystals. Their chemical compositions are useful in deciphering pre-eruptive conditions and magma evolution. The present study examined melt inclusions trapped in phenocrysts from the 3rd and 4th magmatic cycles (1869-1988) at Volcan de Colima, Mexico. Melt inclusions have highly evolved chemical compositions: 65-77% SiO2, >12% A12O3, 3-6% Na2O and K20 and less than 5.5% Fe and Mg. Major element compositions suggest that they are strongly differentiated magmas controlled by fractionation of plagioclase, opx, cpx and hornblende. Water concentrations were measured to be 2.7-3.5 wt. % in cpx hosted inclusions and 0.3-0.7 wt % in opx and plagioclase. Trace element compositions are anomalously low and inversely correlate with water. From this we deduce that Colima lavas and scorias simultaneously differentiate and degas. Moreover, hornblende rim growth rates constrain the ascent of the Colima magmas to -100 days for passive eruptions and >4 days for plinian eruptions.
Resumo:
The Deccan Trap basalts are the remnants of a massive series of lava flows that erupted at the K/T boundary and covered 1-2 million km2 of west-central India. This eruptive event is of global interest because of its possible link to the major mass extinction event, and there is much debate about the duration of this massive volcanic event. In contrast to isotopic or paleomagnetic dating methods, I explore an alternative approach to determine the lifecycle of the magma chambers that supplied the lavas, and extend the concept to obtain a tighter constraint on Deccan’s duration. My method relies on extracting time information from elemental and isotopic diffusion across zone boundary in an individual crystal. I determined elemental and Sr-isotopic variations across abnormally large (2-5 cm) plagioclase crystals from the Thalghat and Kashele “Giant Plagioclase Basalts” from the lowermost Jawhar and Igatpuri Formations respectively in the thickest Western Ghats section near Mumbai. I also obtained bulk rock major, trace and rare earth element chemistry of each lava flow from the two formations. Thalghat flows contain only 12% zoned crystals, with 87Sr/86Sr ratios of 0.7096 in the core and 0.7106 in the rim, separated by a sharp boundary. In contrast, all Kashele crystals have a wider range of 87Sr/86Sr values, with multiple zones. Geochemical modeling of the data suggests that the two types of crystals grew in distinct magmatic environments. Modeling intracrystalline diffusive equilibration between the core and rim of Thalghat crystals led me to obtain a crystal growth rate of 2.03x10-10 cm/s and a residence time of 780 years for the crystals in the magma chamber(s). Employing some assumptions based on field and geochronologic evidence, I extrapolated this residence time to the entire Western Ghats and obtained an estimate of 25,000 – 35,000 years for the duration of Western Ghats volcanism. This gave an eruptive rate of 30 – 40 km3/yr, which is much higher than any presently erupting volcano. This result will remain speculative until a similarly detailed analytical-modeling study is performed for the rest of the Western Ghats formations.