8 resultados para resource availability
em Digital Commons at Florida International University
Resumo:
Disturbances alter competitive hierarchies by reducing populations and altering resource regimes. The interaction between disturbance and resource availability may strongly influence the structure of plant communities, as observed in the recolonization of seagrass beds in outer Florida Bay that were denuded by sea-urchin overgrazing. There is no consensus concerning the interaction between disturbance and resource availability on competition intensity (CI). On the other hand, species diversity is dependent on both factors. Peaks in species diversity have been observed to occur when both resource availability and disturbance intensity are high, thus implying that CI is low. Based on this supposition of previous models, I presented the resource-disturbance hypothesis as a graphical model to make predictions of CI as a function of both disturbance intensity and the availability of a limiting resource. The predictions of this model were tested in two experiments within a seagrass community in south Florida, in which transplants of Halodule wrightii were placed into near-monocultures of Syringodium filiforme in a full-factorial array. In the first experiment, two measures of relative CI were calculated based on the changes in the short-shoot number (SS) and of rhizome length (RHL) on the transplants. Both light and disturbance were identified as important factors, though the interaction between light * disturbance was not significant. Relative CISS ranged between 0.2 and 1.0 for the high light and high disturbance treatments and the relative CIRHL < 0 for the same treatments, though results were not significantly different due to high variability and low sample size. These results, including a contour schematic using six data points from the different treatment combinations, preliminarily suggests that the resource-disturbance hypothesis may be used may be used as a next step in developing our understanding of the mechanisms involved in structuring plant communities. Furthermore, the focus of the model is on the outcome of CI, which may be a useful predictor of changes in species diversity. Further study is needed to confirm the results of this study and validate the usefulness of this model in other systems. ^
Resumo:
Heterotrophic bacteria are important decomposers and transformers of primary production and provide an important link between detritus and the aquatic food web. In seagrass ecosystems, much of seagrass primary production is unavailable through direct grazing and must undergo microbial reworking before seagrass production can enter the aquatic food web. The goal of my dissertation research is to understand better the role heterotrophic bacteria play in carbon cycling in seagrass estuaries. My dissertation research focuses on Florida Bay, a seagrass estuary that has experienced recent changes in carbon source availability, which may have altered ecosystem function. My dissertation research investigates the importance of seagrass, algal and/or cyanobacterial, and allochthonous-derived organic matter to heterotrophic bacteria in Florida Bay and helps establish the carbon base of the estuarine food web. ^ A three tiered approach to the study of heterotrophic bacterial carbon cycling and trophic influences in Florida Bay was used: (1) Spatiotemporal observations of environmental parameters (hydrology, nutrients, extracellular enzymes, and microbial abundance, biomass, and production); (2) Microbial grazing experiments under different levels of top-down and bottom-up influence; and (3) Bulk and compound-specific (bacteria-biomarker fatty acid analysis) stable carbon isotope analysis. ^ In Florida Bay, spatiotemporal patterns in microbial extracellular enzyme (also called ectoenzyme) activities indicate that microorganisms hydrolyzed selectively fractions of the estuarine organic matter pool. The microbial community hydrolyzed organic acids, peptides, and phosphate esters and did not use storage and structural carbohydrates. Organic matter use by heterotrophic bacterioplankton in Florida Bay was co-regulated by bottom-up (resource availability) and top-down (grazer mediated) processes. A bacterial carbon budget based on bacterial, epiphytic, and seagrass production indicates that heterotrophic bacterial carbon cycles are supported primarily through epiphytic production with mixing from seagrass production. Stable carbon isotope analysis of bacteria biomarkers and carbon sources in Florida Bay corroborate the results of the bacterial carbon budget. These results support previous studies of aquatic consumers in Florida Bay, indicating that epiphytic/benthic algal and/or cyanobacterial production with mixing from seagrass-derived organic matter is the carbon base of the seagrass estuarine food web. ^
Resumo:
Long-term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on Florida Bay biogeochemistry. Planktonic communities respond quickly to changes in water quality, thus spatial variability in community composition and relationships to nutrient parameters must be understood in order to evaluate future downstream impacts of modifications to Everglades hydrology. Here we present initial results combining flow cytometry analyses of phytoplankton and bacterial populations (0.1–50 μm size fraction) with measurements of δ13C and δ15N composition and dissolved inorganic nutrient concentrations to explore proxies for planktonic species assemblage compositions and nutrient cycling. Particulate organic material in the 0.1–50 μm size fraction was collected from five stations in Northeastern and Western Florida Bay to characterize spatial variability in species assemblage and stable isotopic composition. A dense bloom of the picocyanobacterium, Synechococcus elongatus, was observed at Western Florida Bay sites. Smaller Synechococcus sp. were present at Northeast sites in much lower abundance. Bacteria and detrital particles were also more abundant at Western Florida Bay stations than in the northeast region. The highest abundance of detritus occurred at Trout Creek, which receives freshwater discharge from the Everglades through Taylor Slough. In terms of nutrient availability and stable isotopic values, the S. elongatus population in the Western bay corresponded to low DIN (0.5 μM NH 4 + ; 0.2 μM NO 3 − ) concentrations and depleted δ15N signatures ranging from +0.3 to +0.8‰, suggesting that the bloom supported high productivity levels through N2-fixation. δ15N values from the Northeast bay were more enriched (+2.0 to +3.0‰), characteristic of N-recycling. δ13C values were similar for all marine Florida Bay stations, ranging from −17.6 to −14.4‰, however were more depleted at the mangrove ecotone station (−25.5 to −22.3‰). The difference in the isotopic values reflects differences in carbon sources. These findings imply that variations in resource availability and nutrient sources exert significant control over planktonic community composition, which is reflected by stable isotopic signatures.
Biotic and abiotic determinants of intermediate-consumer trophic diversity in the Florida everglades
Resumo:
Food-web structure can shape population dynamics and ecosystem functioning and stability. We investigated the structure of a food-web fragment consisting of dominant intermediate consumers (fishes and crayfishes) in the Florida Everglades, using stable isotope analysis to quantify trophic diversity along gradients of primary production (periphyton), disturbance (marsh drying) and intermediate-consumer density (a possible indicator of competition). We predicted that trophic diversity would increase with resource availability and decrease after disturbance, and that competition could result in greater trophic diversity by favouring resource partitioning. Total trophic diversity, measured by niche area, decreased with periphyton biomass and an ordination axis representing several bluegreen algae species. Consumers’ basal resource diversity, estimated by δ13C values, was similarly related to algal community structure. The range of trophic levels (δ15N range) increased with time since the most recent drying and reflooding event, but decreased with intermediate-consumer density, and was positively related to the ordination axis reflecting increases in green algae and decreases in filamentous bluegreen algae. Our findings suggest that algal quality, independent of quantity, influences food-web structure and demonstrate an indirect role of nutrient enrichment mediated by its effects on periphyton palatability and biomass. These results reveal potential mechanisms for anthropogenic effects on Everglades communities.
Does landscape context affect habitat value? The importance of seascape ecology in back-reef systems
Resumo:
Seascape ecology provides a useful framework from which to understand the processes governing spatial variability in ecological patterns. Seascape context, or the composition and pattern of habitat surrounding a focal patch, has the potential to impact resource availability, predator-prey interactions, and connectivity with other habitats. For my dissertation research, I combined a variety of approaches to examine how habitat quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, back-reef ecosystems. In the first part of my dissertation, I examined how seascape context can affect reef fish communities on an experimental array of artificial reefs created in various seascape contexts in Abaco, Bahamas. I found that the amount of seagrass at large spatial scales was an important predictor of community assembly on these reefs. Additionally, seascape context had differing effects on various aspects of habitat quality for the most common reef species, White grunt Haemulon plumierii. The amount of seagrass at large spatial scales had positive effects on fish abundance and secondary production, but not on metrics of condition and growth. The second part of my dissertation focused on how foraging conditions for fish varied across a linear seascape gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus griseus, traded food quality for quantity along this estuarine gradient, maintaining similar growth rates and condition among sites. Additional work focused on identifying major energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. Algal and microphytobenthos resource pools supported most of the production to these consumers, and body size for one of the consumers mediated food web linkages with surrounding mangrove habitats. All of these studies examined a different facet of the importance of seascape context in governing ecological processes occurring in focal habitats and underscore the role of connectivity among habitats in back-reef systems. The results suggest that management approaches consider the surrounding seascape when prioritizing areas for conservation or attempting to understand the impacts of seascape change on focal habitat patches. For this reason, spatially-based management approaches are recommended to most effectively manage back-reef systems.
Resumo:
Pulse subsidies account for a substantial proportion of resource availability in many systems, having persistent and cascading effects on consumer population dynamics, and energy flow within and across ecosystem boundaries. Although the importance of pulsed resource subsidies is well-established, the mechanisms that regulate resource fluxes across ecosystem boundaries are not well understood. The aim of our study was to determine the extent that marsh consumers regulated a marsh prey subsidy to estuarine consumers in the oligohaline reaches of an Everglades estuary. We characterized a marsh pulsed subsidy of cyprinodontoid, invertebrate and sunfish prey that move into the upper estuary from adjacent drying marshes. In response to the prey pulse, we examined the numerical, fitness and dietary responses of three focal consumers in the upper estuary; two marsh species (largemouth bass and bowfin) that accompanied the subsidy as a result of marsh drying, and one estuarine consumer (snook). At the onset of marsh drying and the prey subsidy, estuarine consumers switched diets to consume the larger marsh prey (sunfishes), while bass and bowfin maintained similar diets (cyprinodontoids and invertebrates respectively) than pre and post subsidy. From the consumption of this subsidy, bass (marsh species) and snook (estuarine species) exhibited fitness gains while bowfin did not. Although both marsh and estuarine consumers benefitted from the subsidy, we found evidence that freshwater consumers shunted some of the subsidy away from snook. Of the prey sampled in consumer stomachs, 41% of marsh prey biomass was eaten by marsh consumers, while 59% was consumed by the estuarine consumer. We conclude that the amount of the marsh prey available to estuarine consumers may be greater in the absence of marsh consumers, thus the magnitude of the prey subsidy could depend on the dynamics of the marsh consumers from donor communities.
Resumo:
Adaptation is an important requirement for mobile applications due to the varying levels of resource availability that characterizes mobile environments. However without proper control, multiple applications can each adapt independently in response to a range of different adaptive stimuli, causing conflicts or sub optimal performance. In this thesis we presented a framework, which enables multiple adaptation mechanisms to coexist on one platform. The key component of this framework was the 'Policy Server', which has all the system policies and governs the rules for adaptation. We also simulated our framework and subjected it to various adaptation scenarios to demonstrate the working of the system as a whole. With the help of the simulation it was shown that our framework enables seamless adaptation of multiple applications.
Does Landscape Context Affect Habitat Value? The Importance of Seascape Ecology in Back-reef Systems
Resumo:
Seascape ecology provides a useful framework from which to understand the processes governing spatial variability in ecological patterns. Seascape context, or the composition and pattern of habitat surrounding a focal patch, has the potential to impact resource availability, predator-prey interactions, and connectivity with other habitats. For my dissertation research, I combined a variety of approaches to examine how habitat quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, back-reef ecosystems. In the first part of my dissertation, I examined how seascape context can affect reef fish communities on an experimental array of artificial reefs created in various seascape contexts in Abaco, Bahamas. I found that the amount of seagrass at large spatial scales was an important predictor of community assembly on these reefs. Additionally, seascape context had differing effects on various aspects of habitat quality for the most common reef species, White grunt Haemulon plumierii. The amount of seagrass at large spatial scales had positive effects on fish abundance and secondary production, but not on metrics of condition and growth. The second part of my dissertation focused on how foraging conditions for fish varied across a linear seascape gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus griseus, traded food quality for quantity along this estuarine gradient, maintaining similar growth rates and condition among sites. Additional work focused on identifying major energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. Algal and microphytobenthos resource pools supported most of the production to these consumers, and body size for one of the consumers mediated food web linkages with surrounding mangrove habitats. All of these studies examined a different facet of the importance of seascape context in governing ecological processes occurring in focal habitats and underscore the role of connectivity among habitats in back-reef systems. The results suggest that management approaches consider the surrounding seascape when prioritizing areas for conservation or attempting to understand the impacts of seascape change on focal habitat patches. For this reason, spatially-based management approaches are recommended to most effectively manage back-reef systems.