3 resultados para reproductive potential

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Key to predicting impacts of predation is understanding the mechanisms through which predators impact prey populations. While consumptive effects are well-known, non-consumptive predator effects (risk effects) are increasingly being recognized as important. Studies of risk effects, however, have focused largely on how trade-offs between food and safety affect fitness. Less documented, and appreciated, is the potential for predator presence to directly suppress prey reproduction and affect life-history characteristics. For the first time, we tested the effects of visual predator cues on reproduction of two prey species with different reproductive modes, lecithotrophy (i.e. embryonic development primarily fueled by yolk) and matrotrophy (i.e. energy for embryonic development directly supplied by the mother to the embryo through a vascular connection). Predation risk suppressed reproduction in the lecithotrophic prey (Gambusia holbrokii) but not the matrotroph (Heterandria formosa). Predator stress caused G. holbrooki to reduce clutch size by 43%, and to produce larger and heavier offspring compared to control females. H. formosa, however, did not show any such difference. In G. holbrooki we also found a significantly high percentage (14%) of stillbirths in predator-exposed treatments compared to controls (2%). To the best of our knowledge, this is the first direct empirical evidence of predation stress affecting stillbirths in prey. Our results suggest that matrotrophy, superfetation (clutch overlap), or both decrease the sensitivity of mothers to environmental fluctuation in resource (food) and stress (predation risk) levels compared to lecithotrophy. These mechanisms should be considered both when modeling consequences of perceived risk of predation on prey-predator population dynamics and when seeking to understand the evolution of reproductive modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall objective of the research presented in this dissertation was to assess exposure to endocrine disrupting chemicals (EDCs), polychlorinated biphenyls (PCBs), phthalates, and bisphenol A (BPA) in the general population and evaluate their associations with adverse reproductive health effects, including cancers, in women. Given the proven contribution of unopposed estrogens to the risk for endometrial neoplasia or breast cancer, renewed health concerns have aroused about estrogen mimicking EDCs found in food, personal care products or as environmental contaminants. Our meta-analysis showed that exposure to estrogen mimicking PCBs increased summary risk of breast cancer and endometriosis. We further evaluated the relationship between endometriosis and breast cancer, and EDCs using a bioinformatics method. Our bioinformatics approach was able to identify genes with the potential to be involved in interaction with PCB, phthalates and BPA that may be important to the development of breast cancer and endometriosis. Therefore, we hypothesized that exposure to EDCs such as PCBs, phthalates, and BPA, results in adverse reproductive health effects in women. Using subject data and biomarkers available from the Center for Disease Controls National Health and Nutrition Examination Survey database we conducted a cross-sectional study of EDCs in relation to self-reported history of endometriosis, uterine leiomyomas, breast cancer, cervical cancer, ovarian cancer, and uterine cancer. Significantly higher body burdens of PCBs were found in women diagnosed with breast cancer, ovarian cancer, and uterine cancer compared to women without cancer. PCB 138 was significantly associated with breast cancer, cervical cancer, and uterine cancer, while PCBs 74 and 118 were significantly associated with ovarian cancer. The sum of dioxin-like PCBs were significantly associated with ovarian cancer (OR of 2.02, 95% CI: 1.06-3.85) and the sum of non-dioxin-like PCBs were significantly associated with uterine cancer (OR of 1.12, 95%CI: 1.03-1.23). Significantly higher body burdens of PCBs were also found in women diagnosed with endometriosis and uterine leiomyomas. Documenting the exposure to EDCs among the general U.S. population, and identifying agents associated with reproductive toxicity have the potential to fill research gaps and facilitate our understanding of the complex role environmental chemicals play in producing toxicity in reproductive organs.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall objective of the research presented in this dissertation was to assess exposure to endocrine disrupting chemicals (EDCs), polychlorinated biphenyls (PCBs), phthalates, and bisphenol A (BPA) in the general population and evaluate their associations with adverse reproductive health effects, including cancers, in women. Given the proven contribution of unopposed estrogens to the risk for endometrial neoplasia or breast cancer, renewed health concerns have aroused about estrogen mimicking EDCs found in food, personal care products or as environmental contaminants. Our meta-analysis showed that exposure to estrogen mimicking PCBs increased summary risk of breast cancer and endometriosis. We further evaluated the relationship between endometriosis and breast cancer, and EDCs using a bioinformatics method. Our bioinformatics approach was able to identify genes with the potential to be involved in interaction with PCB, phthalates and BPA that may be important to the development of breast cancer and endometriosis. Therefore, we hypothesized that exposure to EDCs such as PCBs, phthalates, and BPA, results in adverse reproductive health effects in women. Using subject data and biomarkers available from the Center for Disease Controls National Health and Nutrition Examination Survey database we conducted a cross-sectional study of EDCs in relation to self-reported history of endometriosis, uterine leiomyomas, breast cancer, cervical cancer, ovarian cancer, and uterine cancer. Significantly higher body burdens of PCBs were found in women diagnosed with breast cancer, ovarian cancer, and uterine cancer compared to women without cancer. PCB 138 was significantly associated with breast cancer, cervical cancer, and uterine cancer, while PCBs 74 and 118 were significantly associated with ovarian cancer. The sum of dioxin-like PCBs were significantly associated with ovarian cancer (OR of 2.02, 95% CI: 1.06-3.85) and the sum of non-dioxin-like PCBs were significantly associated with uterine cancer (OR of 1.12, 95%CI: 1.03-1.23). Significantly higher body burdens of PCBs were also found in women diagnosed with endometriosis and uterine leiomyomas. Documenting the exposure to EDCs among the general U.S. population, and identifying agents associated with reproductive toxicity have the potential to fill research gaps and facilitate our understanding of the complex role environmental chemicals play in producing toxicity in reproductive organs.