6 resultados para refractive error
em Digital Commons at Florida International University
Resumo:
This research pursued the conceptualization, implementation, and verification of a system that enhances digital information displayed on an LCD panel to users with visual refractive errors. The target user groups for this system are individuals who have moderate to severe visual aberrations for which conventional means of compensation, such as glasses or contact lenses, does not improve their vision. This research is based on a priori knowledge of the user's visual aberration, as measured by a wavefront analyzer. With this information it is possible to generate images that, when displayed to this user, will counteract his/her visual aberration. The method described in this dissertation advances the development of techniques for providing such compensation by integrating spatial information in the image as a means to eliminate some of the shortcomings inherent in using display devices such as monitors or LCD panels. Additionally, physiological considerations are discussed and integrated into the method for providing said compensation. In order to provide a realistic sense of the performance of the methods described, they were tested by mathematical simulation in software, as well as by using a single-lens high resolution CCD camera that models an aberrated eye, and finally with human subjects having various forms of visual aberrations. Experiments were conducted on these systems and the data collected from these experiments was evaluated using statistical analysis. The experimental results revealed that the pre-compensation method resulted in a statistically significant improvement in vision for all of the systems. Although significant, the improvement was not as large as expected for the human subject tests. Further analysis suggest that even under the controlled conditions employed for testing with human subjects, the characterization of the eye may be changing. This would require real-time monitoring of relevant variables (e.g. pupil diameter) and continuous adjustment in the pre-compensation process to yield maximum viewing enhancement.
Resumo:
The purpose of this study was to identify the effects of active dehydration on balance in euthermic individuals employing the Balance Error Scoring System (BESS). The results indicate that dehydration significantly negatively affects balance.
Resumo:
This study investigates the impact of a combined treatment of Systematic Error Correction and Repeated Reading on reading rate and errors for 18 year olds with undiagnosed reading difficulties on a Caribbean Island. In addition to direct daily measures of reading accuracy, the Reading Self Perception Scale was administered to determine whether the intervention was associated with changes in the way the student perceives himself as a reader.
Resumo:
This study determined the levels of algebra problem solving skill at which worked examples promoted learning of further problem solving skill and reduction of cognitive load in college developmental algebra students. Problem solving skill was objectively measured as error production; cognitive load was subjectively measured as perceived mental effort. ^ Sixty-three Ss were pretested, received homework of worked examples or mass problem solving, and posttested. Univarate ANCOVA (covariate = previous grade) were performed on the practice and posttest data. The factors used in the analysis were practice strategy (worked examples vs. mass problem solving) and algebra problem solving skill (low vs. moderate vs. high). Students in the practice phase who studied worked examples exhibited (a) fewer errors and reduced cognitive load, at moderate skill; (b) neither fewer errors nor reduced cognitive load, at low skill; and (c) only reduced cognitive load, at high skill. In the posttest, only cognitive load was reduced. ^ The results suggested that worked examples be emphasized for developmental students with moderate problem solving skill. Areas for further research were discussed. ^
Resumo:
This study analyzed three fifth grade students’ misconceptions and error patterns when working with equivalence, addition and subtraction of fractions. The findings revealed that students used both conceptual and procedural knowledge to solve the problems. They used pictures, gave examples, and made connections to other mathematical concepts and to daily life topics. Error patterns found include using addition and subtraction of numerators and denominators, and finding the greatest common factor.
Resumo:
This research pursued the conceptualization, implementation, and verification of a system that enhances digital information displayed on an LCD panel to users with visual refractive errors. The target user groups for this system are individuals who have moderate to severe visual aberrations for which conventional means of compensation, such as glasses or contact lenses, does not improve their vision. This research is based on a priori knowledge of the user's visual aberration, as measured by a wavefront analyzer. With this information it is possible to generate images that, when displayed to this user, will counteract his/her visual aberration. The method described in this dissertation advances the development of techniques for providing such compensation by integrating spatial information in the image as a means to eliminate some of the shortcomings inherent in using display devices such as monitors or LCD panels. Additionally, physiological considerations are discussed and integrated into the method for providing said compensation. In order to provide a realistic sense of the performance of the methods described, they were tested by mathematical simulation in software, as well as by using a single-lens high resolution CCD camera that models an aberrated eye, and finally with human subjects having various forms of visual aberrations. Experiments were conducted on these systems and the data collected from these experiments was evaluated using statistical analysis. The experimental results revealed that the pre-compensation method resulted in a statistically significant improvement in vision for all of the systems. Although significant, the improvement was not as large as expected for the human subject tests. Further analysis suggest that even under the controlled conditions employed for testing with human subjects, the characterization of the eye may be changing. This would require real-time monitoring of relevant variables (e.g. pupil diameter) and continuous adjustment in the pre-compensation process to yield maximum viewing enhancement.