6 resultados para red rain cells

em Digital Commons at Florida International University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a study of the effects on animals of seed protein extracts of 15 Malesian members of the Leguminosae (including 11 rain forest tree species), most of the taxa agglutinated red blood cells, induced mitosis, and inhibited amylases. These results are consistent with the hypothesis that these proteins interact with other organisms, most probably in defense mechanisms against predation by animals. The functions of these proteins are most profitably studied in rain forest environments where their activity is so marked, and where biological interactions are particularly important.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitric Oxide (NO) is produced in the vascular endothelium where it then diffuses to the adjacent smooth muscle cells (SMC) activating agents known to regulate vascular tone. The close proximity of the site of NO production to the red blood cells (RBC) and its known fast consumption by hemoglobin, suggests that the blood will scavenge most of the NO produced. Therefore, it is unclear how NO is able to play its role in accomplishing vasodilation. Investigation of NO production and consumption rates will allow insight into this paradox. DAF-FM is a sensitive NO fluorescence probe widely used for qualitative assessment of cellular NO production. With the aid of a mathematical model of NO/DAF-FM reaction kinetics, experimental studies were conducted to calibrate the fluorescence signal showing that the slope of fluorescent intensity is proportional to [NO]2 and exhibits a saturation dependence on [DAF-FM]. In addition, experimental data exhibited a Km dependence on [NO]. This finding was incorporated into the model elucidating NO 2 as the possible activating agent of DAF-FM. A calibration procedure was formed and applied to agonist stimulated cells, providing an estimated NO release rate of 0.418 ± 0.18 pmol/cm2s. To assess NO consumption by RBCs, measurements of the rate of NO consumption in a gas stream flowing on top of an RBC solution of specified Hematocrit (Hct) was performed. The consumption rate constant (kbl)in porcine RBCs at 25°C and 45% Hct was estimated to be 3500 + 700 s-1. kbl is highly dependent on Hct and can reach up to 9900 + 4000 s-1 for 60% Hct. The nonlinear dependence of kbl on Hct suggests a predominant role for extracellular diffusion in limiting NO uptake. Further simulations showed a linear relationship between varying NO production rates and NO availability in the SMCs utilizing the estimated NO consumption rate. The corresponding SMC [NO] level for the average NO production rate estimated was approximately 15.1 nM. With the aid of experimental and theoretical methods we were able to examine the NO paradox and exhibit that endothelial derived NO is able to escape scavenging by RBCs to diffuse to the SMCs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stable isotope analysis has become a standard ecological tool for elucidating feeding relationships of organisms and determining food web structure and connectivity. There remain important questions concerning rates at which stable isotope values are incorporated into tissues (turnover rates) and the change in isotope value between a tissue and a food source (discrimination values). These gaps in our understanding necessitate experimental studies to adequately interpret field data. Tissue turnover rates and discrimination values vary among species and have been investigated in a broad array of taxa. However, little attention has been paid to ectothermic top predators in this regard. We quantified the turnover rates and discrimination values for three tissues (scutes, red blood cells, and plasma) in American alligators (Alligator mississippiensis). Plasma turned over faster than scutes or red blood cells, but turnover rates of all three tissues were very slow in comparison to those in endothermic species. Alligator δ15N discrimination values were surprisingly low in comparison to those of other top predators and varied between experimental and control alligators. The variability of δ15N discrimination values highlights the difficulties in using δ15N to assign absolute and possibly even relative trophic levels in field studies. Our results suggest that interpreting stable isotope data based on parameter estimates from other species can be problematic and that large ectothermic tetrapod tissues may be characterized by unique stable isotope dynamics relative to species occupying lower trophic levels and endothermic tetrapods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A ray tracing model has been developed to investigate the possible focusing effects of the convexly curved epidermal cell walls which characterize a number of shade-adapted plants. The model indicates that such focusing occurs, resulting in higher photosynthetic photon flux densities at certain locations within the leaf. It is postulated that there will be a corresponding increase in the rate of photosynthesis. In addition, leaf reflectance measurements indicate that this is generally less for the shade plants compared with sun species and would be advantageous in increasing the efficiency of energy capture. Either effect is important for plants which must survive at extremely low light levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The permanent pigmentation of the leaves of tropical rain forest herbs with anthocyanin has traditionally been viewed as a mechanism for enhancing transpiration by increased heat absorption. We report measurements to ?+0.1?0C on four Indo-mal- esian forest species polymorphic with respect to color. There were no detectable differences in temperature between cyanic and green leaves. In deeply shaded habitats, any temperature difference would arise from black-body infrared radiation which all leaves absorb and to which anthocyanins are transparent. Reflectance spectra of the lower leaf surfaces of these species re- vealed increased reflectance around 650-750 nm for cyanic leaves compared with green leaves of the same species. In all spe- cies anthocyanin was located in a single layer of cells immediately below the photosynthetic tissue. These observations provide empirical evidence that the cyanic layer can improve photosynthetic energy capture by back-scattering additional light through the photosynthetic tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Why the leaves of many woody species accumulate anthocyanins prior to being shed has long puzzled biologists because it is unclear what effects anthocyanins may have on leaf function. Here, we provide evidence for red-osier dogwood (Cornus stolonifera) that anthocyanins form a pigment layer in the palisade mesophyll layer that decreases light capture by chloroplasts. Measurements of leaf absorbance demonstrated that red-senescing leaves absorbed more light of blue-green to orange wavelengths (495–644 nm) compared with yellow-senescing leaves. Using chlorophyll a fluorescence measurements, we observed that maximum photosystem II (PSII) photon yield of red-senescing leaves recovered from a high-light stress treatment, whereas yellow-senescing leaves failed to recover after 6 h of dark adaptation, which suggests photo-oxidative damage. Because no differences were observed in light response curves of effective PSII photon yield for red- and yellow-senescing leaves, differences between red- and yellow-senescing cannot be explained by differences in the capacities for photochemical and non-photochemical light energy dissipation. A role of anthocyanins as screening pigments was explored further by measuring the responses PSII photon yield to blue light, which is preferentially absorbed by anthocyanins, versus red light, which is poorly absorbed. We found that dark-adapted PSII photon yield of red-senescing leaves recovered rapidly following illumination with blue light. However, red light induced a similar, prolonged decrease in PSII photon yield in both red- and yellow-senescing leaves. We suggest that optical masking of chlorophyll by anthocyanins reduces risk of photo-oxidative damage to leaf cells as they senesce, which otherwise may lower the efficiency of nutrient retrieval from senescing autumn leaves.