5 resultados para real business cycles

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubblelike deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the nonfundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most research on stock prices is based on the present value model or the more general consumption-based model. When applied to real economic data, both of them are found unable to account for both the stock price level and its volatility. Three essays here attempt to both build a more realistic model, and to check whether there is still room for bubbles in explaining fluctuations in stock prices. In the second chapter, several innovations are simultaneously incorporated into the traditional present value model in order to produce more accurate model-based fundamental prices. These innovations comprise replacing with broad dividends the more narrow traditional dividends that are more commonly used, a nonlinear artificial neural network (ANN) forecasting procedure for these broad dividends instead of the more common linear forecasting models for narrow traditional dividends, and a stochastic discount rate in place of the constant discount rate. Empirical results show that the model described above predicts fundamental prices better, compared with alternative models using linear forecasting process, narrow dividends, or a constant discount factor. Nonetheless, actual prices are still largely detached from fundamental prices. The bubble-like deviations are found to coincide with business cycles. The third chapter examines possible cointegration of stock prices with fundamentals and non-fundamentals. The output gap is introduced to form the non-fundamental part of stock prices. I use a trivariate Vector Autoregression (TVAR) model and a single equation model to run cointegration tests between these three variables. Neither of the cointegration tests shows strong evidence of explosive behavior in the DJIA and S&P 500 data. Then, I applied a sup augmented Dickey-Fuller test to check for the existence of periodically collapsing bubbles in stock prices. Such bubbles are found in S&P data during the late 1990s. Employing econometric tests from the third chapter, I continue in the fourth chapter to examine whether bubbles exist in stock prices of conventional economic sectors on the New York Stock Exchange. The ‘old economy’ as a whole is not found to have bubbles. But, periodically collapsing bubbles are found in Material and Telecommunication Services sectors, and the Real Estate industry group.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The current study applies a two-state switching regression model to examine the behavior of a hypothetical portfolio of ten socially responsible (SRI) equity mutual funds during the expansion and contraction phases of US business cycles between April 1991 and June 2009, based on the Carhart four-factor model, using monthly data. The model identified a business cycle effect on the performance of SRI equity mutual funds. Fund returns were less volatile during expansion/peaks than during contraction/troughs, as indicated by the standard deviation of returns. During contraction/troughs, fund excess returns were explained by the differential in returns between small and large companies, the difference between the returns on stocks trading at high and low Book-to-Market Value, the market excess return over the risk-free rate, and fund objective. During contraction/troughs, smaller companies offered higher returns than larger companies (ci = 0.26, p = 0.01), undervalued stocks out-performed high growth stocks (h i = 0.39, p <0.0001), and funds with growth objectives out-performed funds with other objectives (oi = 0.01, p = 0.02). The hypothetical SRI portfolio was less risky than the market (bi = 0.74, p <0.0001). During expansion/peaks, fund excess returns were explained by the market excess return over the risk-free rate, and fund objective. Funds with other objectives, such as balanced funds and income funds out-performed funds with growth objectives (oi = −0.01, p = 0.03). The hypothetical SRI portfolio exhibited similar risk as the market (bi = 0.93, p <0.0001). The SRI investor adds a third criterion to the risk and return trade-off of traditional portfolio theory. This constraint is social performance. The research suggests that managers of SRI equity mutual funds may diminish value by using social and ethical criteria to select stocks, but add value by superior stock selection. The result is that the performance of SRI mutual funds is very similar to that of the market. There was no difference in the value added among secular SRI, religious SRI, and vice screens.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Along with the accumulation of evidence supporting the role of entrepreneurship in economic development (Acs & Armington, 2006; Kuratko, 2005, Reynolds, 2007), governments have persisted in encouraging people to become entrepreneurs (Acs & Stough, 2008; Brannback & Carsrud, 2008). These efforts have tried to reproduce the conditions under which entrepreneurship emerges. One of these conditions is to develop entrepreneurial skills among students and scientists (Fan & Foo, 2004). Entrepreneurship education within higher education has experienced a remarkable expansion in the last 20 years (Green, 2008). To develop entrepreneurial skills among students, scholars have proposed different teaching approaches. However, no clear relationship has been demonstrated between entrepreneurship education, learning outcomes, and business creation (Hostager & Decker, 1999). Despite policy makers demands for more accountability from educational institutions (Klimoski, 2007) and entrepreneurship instructors demands for consistency about what should be taught and how (Maidment, 2009), the appropriate content for entrepreneurship programs remains under constant discussion (Solomon, 2007). Entrepreneurship education is still in its infancy, professors propose diverse teaching goals and radically different teaching methods. This represents an obstacle to development of foundational and consistent curricula across the board (Cone, 2008). Entrepreneurship education is in need of a better conceptualization of the learning outcomes pursued in order to develop consistent curriculum. Many schools do not have enough qualified faculty to meet the growing student demand and a consistent curriculum is needed for faculty development. Entrepreneurship instructors and their teaching practices are of interest because they have a role in producing the entrepreneurs needed to grow the economy. This study was designed to understand instructors’ perspectives and actions related to their teaching. The sample studied consisted of eight college and university entrepreneurship instructors. Cases met predetermined criteria of importance followed maximum variation strategies. Results suggest that teaching content were consistent across participants while different teaching goals were identified: some instructors inspire and develop general skills of students while others envision the creation of a real business as the major outcome of their course. A relationship between methods reported by instructors and their disciplinary background, teaching perspective, and entrepreneurial experience was found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With advances in science and technology, computing and business intelligence (BI) systems are steadily becoming more complex with an increasing variety of heterogeneous software and hardware components. They are thus becoming progressively more difficult to monitor, manage and maintain. Traditional approaches to system management have largely relied on domain experts through a knowledge acquisition process that translates domain knowledge into operating rules and policies. It is widely acknowledged as a cumbersome, labor intensive, and error prone process, besides being difficult to keep up with the rapidly changing environments. In addition, many traditional business systems deliver primarily pre-defined historic metrics for a long-term strategic or mid-term tactical analysis, and lack the necessary flexibility to support evolving metrics or data collection for real-time operational analysis. There is thus a pressing need for automatic and efficient approaches to monitor and manage complex computing and BI systems. To realize the goal of autonomic management and enable self-management capabilities, we propose to mine system historical log data generated by computing and BI systems, and automatically extract actionable patterns from this data. This dissertation focuses on the development of different data mining techniques to extract actionable patterns from various types of log data in computing and BI systems. Four key problems—Log data categorization and event summarization, Leading indicator identification , Pattern prioritization by exploring the link structures , and Tensor model for three-way log data are studied. Case studies and comprehensive experiments on real application scenarios and datasets are conducted to show the effectiveness of our proposed approaches.