5 resultados para reaction pathways
em Digital Commons at Florida International University
Resumo:
An extensive study of the reaction pathways of 1,1-dicyclopropyl ethylene, cis- and trans- 1,2-dicyclopropylethylenes has been undertaken with different electrophiles 4-methyl-1,2,4-triazoline-3,5-dione (MTAD), tetracyanoethylene (TCNE), and singlet oxygen $\rm(\sp1O\sb2).$ Comparison of reactivity and reaction mechanisms among the electrophiles is investigated. Singlet oxygen exhibits significantly lower reactivity compared to the other electrophiles. MTAD and TCNE react with dicyclopropylethylenes to produce predominantly $\sp{\prime\prime}2+2\sp{\prime\prime}$ adducts and a small amount of the "ene" adducts. The $\sp{\prime\prime}2+2\sp{\prime\prime}$ is the major product presumably because of the high activation energy leading to the highly strained "ene" products. Solvent trapping studies provide strong evidence of a "stepwise" mechanism, involving a zwitterionic or aziridinium imide as an intermediate from the study of the reactions products of dicyclopropylethylenes and MTAD. ^
Resumo:
I. The target molecules are classified as 1-aryl 2-cyclopropyl substituted ethylene. In the ground state, these molecules have a number of conformers, which are in equilibrium through rotation about single bonds. Once excited, the conformers have fixed conformation and are no longer in equilibrium and can be distinguished by their UV-vis as well as fluorescence spectra. The synthetic strategy involves standard steps. Both 2-methylanthracene and 2-methylnaphthalene were brominated using N-bromosuccinimide to give the bromomethyl adduct, which then was reacted with triphenylphosphine to form the phosphonium salt. This was followed by the formation of the phosphorus ylide, which upon treatment with cyclopropanecarboxaldehyde gave the product.^ II. The degradation of three aliphatic haloethers: bis-(2-chloroethyl) ether, bis-(2-chloroisopropyl) ether, and bis-(2-chloroethoxy)methane and two aromatic haloethers: 4-chlorodiphenyl ether and 4-bromodiphenyl ether was studied. Product studies have been conducted on the titanium dioxide photocatalysis of these compounds including mass balance, monitoring and identifying intermediates to establish the reaction pathways to deduce a mechanism for their degradation. The extent of mineralization was determined from the measurement of halogen anion (Cl$\sp-$/Br$\sp-$) as well as total organic carbon. The relative rates of disappearance of the individual haloethers appear to be related to the hydrophobic character of the given compound. Reaction mechanisms involving hydroxyl radical are proposed to explain the observed results. ^
Resumo:
An extensive study of the reaction pathways of 1,1- dicyclopropyl ethylene, cis- and trans- 1,2-dicyclopropylethylenes has been undertaken with different electrophiles 4-methyl-1,2,4- triazoline-3,5-dione (MTAD), tetracyanoethylene (TCNE), and singlet oxygen (102). Comparison of reactivity and reaction mechanisms among the electrophiles is investigated. Singlet oxygen exhibits significantly lower reactivity compared to the other electrophiles. MTAD and TCNE react with dicyclopropylethylenes to produce predominantly "2+2" adducts and a small amount of the "ene" adducts. The "2+2" is the major product presumably because of the high activation energy leading to the highly strained "ene" products. Solvent trapping studies provide strong evidence of a "stepwise" mechanism, involving a zwitterionic or aziridinium imide as an intermediate from the study of the reactions products of dicyclopropylethylenes and MTAD.
Resumo:
Domoic acid (DA) is a naturally occurring cyanotoxin, which upon ingestion, is responsible for amnesic shellfish poisoning (ASP) in both humans and animals. Produced by the marine diatom, Pseudonitzschia, DA is accumulated by a number of marine organisms including shellfish, clams and mussels which upon consumption can lead to headaches, nausea and seizures. Possessing a variety of functional groups the structure of DA contains three carboxyl groups, a pyrrole ring and a potent conjugated diene region allowing for binding to glutamate receptors in the dorsal hippocampus of the brain causing the described detrimental effects. Although limitations have been placed regarding the amount of DA that may be contained in seafood no limitations have been placed on the amount present in drinking water. Natural degradation of the toxin may occur through reactive oxygen species such as the hydroxyl radical and singlet oxygen at the conjugated diene region. In this work the photooxidation of DA via singlet oxygen has been studied using sorbic acid as a model compound. The three major reaction pathways observed during the photooxdiation process for both acids include 2 + 4 cycloaddition to produce endoperoxides , 2 + 2 reaction to afford aldehydes and ketones or an ene reaction to generate hydroperoxides. Under similar reaction conditions for SA and DA, the endoperoxide has been seen to be the major product for photoxidation of SA while the hydroperoxide has been seen to be the dominant product during photooxidation of DA.
Resumo:
Gasoline oxygenates (MTBE, methyl tert-butyl ether; DIPE, di-isopropyl ether; ETBE, ethyl tert-butyl ether; TAME, tert-amyl ether) are added to gasoline to boost octane and enhance combustion. The combination of large scale use, high water solubility and only minor biodegradability has now resulted in a significant gasoline oxygenate contamination occurring in surface, ground, and drinking water systems. Combination of hydroxyl radical formation and the pyrolytic environment generated by ultrasonic irradiation (665 kHz) leads to the rapid degradation of MTBE and other gasoline oxygenates in aqueous media. ^ The presence of oxygen promotes the degradation processes by rapid reaction with carbon centered radicals indicating radical processes involving O 2 are significant pathways. A number of the oxidation products were identified. The formation of products (alcohols, ketones, aldehydes, esters, peroxides, etc) could be rationalized by mechanisms which involve hydrogen abstraction by OH radical and/or pyrolysis to form carboncentered radicals which react with oxygen and follow standard oxidation chain processes. ^ The reactions of N-substituted R-triazolinediones (RTAD; R = CH 3 or phenyl) have attracted considerable interest because they exhibit a number of unusual mechanistic characteristics that are analogous to the reactions of singlet oxygen (1O2) and offer an easy way to provide C-N bond(s) formation. The reactions of triazolinedione with olefins have been widely studied and aziridinium imides are generally accepted to be the reactive intermediates. ^ We observed the rapid formation of an unusual intermediate upon mixing tetracyclopropylethylene with 4-methyl-1,2,4-triazoline-3,5-dione in CDCl 3. Detailed characterization by NMR (proton, 13C, 2-D NMRs) indicates the intermediate is 5,5,6,6-tetracyclopropyl-3-methyl-5,6-dihydro-oxazolo[3,2- b][1,2,4]-triazolium-2-olate. Such products are extremely rare and have not been studied. Upon warming the intermediate is converted to 2 + 2 diazetidine (major) and ene product (minor). ^ To further explore the kinetics and dynamics of the reaction activation energies were obtained using Arrhenius plots. Activation energies for the formation of the intermediate from reactants, and 2+2 adduct from the intermediate were determined as 7.48 kcal moll and 19.8 kcal mol−1 with their pre-exponential values of 2.24 × 105 dm 3 mol−1 sec−1 and 2.75 × 108 sec−1, respectively, meaning net slow reactions because of low pre-exponential values caused by steric hindrance. ^