2 resultados para randomly switched ODEs
em Digital Commons at Florida International University
Resumo:
Series Micro-Electro-Mechanical System (MEMS) switches based on superconductor are utilized to switch between two bandpass hairpin filters with bandwidths of 365 MHz and nominal center frequencies of 2.1 GHz and 2.6 GHz. This was accomplished with 4 switches actuated in pairs, one pair at a time. When one pair was actuated the first bandpass filter was coupled to the input and output ports. When the other pair was actuated the second bandpass filter was coupled to the input and output ports. The device is made of a YBa2Cu 3O7 thin film deposited on a 20 mm x 20 mm LaAlO3 substrate by pulsed laser deposition. BaTiO3 deposited by RF magnetron sputtering in utilized as the insulation layer at the switching points of contact. These results obtained assured great performance showing a switchable device at 68 V with temperature of 40 K for the 2.1 GHz filter and 75 V with temperature of 30 K for the 2.6 GHz hairpin filter. ^
Resumo:
The purpose of this study was to investigate the ontogeny of auditory learning via operant contingency in Northern bobwhite (Colinus virginianus ) hatchlings and possible interaction between attention, orienting and learning during early development. Chicks received individual 5 min training sessions in which they received a playback of a bobwhite maternal call at a single delay following each vocalization they emitted. Playback was either from a single randomly chosen speaker or switched back and forth semi-randomly between two speakers during training. Chicks were tested 24 hrs later in a simultaneous choice test between the familiar and an unfamiliar maternal call. It was found that day-old chicks showed a significant time-specific decrement in auditory learning when trained with delays in the range of 470–910 ms between their vocalizations and call playback only when training involved two speakers. Two-day-old birds showed an even more sustained disruption of learning than day-old chicks, whereas three-day-old chicks showed a pattern of intermittent interference with their learning when trained at such delays. A similar but less severe decrement in auditory learning was found when chicks were provided with motor training in which playback was contingent upon chicks entering and exiting one of two colored squares placed on the floor of the arena. Chicks provided with playback of the call at randomly chosen delays each time they vocalized exhibited large fluctuations in their responsivity to the auditory stimulus as a function of delay—fluctuations which were correlated significantly with measures of chick learning, particularly at two-days-of-age. When playback was limited to a single location chicks no longer showed a time-specific disruption of their learning of the auditory stimulus. Sequential analyses revealed several patterns suggesting that an attentional process similar or analogous to attentional blink may have contributed both to the observed fluctuations in chick responsivity to the auditory stimulus as a function of delay and to the time-specific learning deficit shown by chicks provided with two-speaker training. The study highlights that learning can be substantially modulated by processes of orienting and attention and has a number of important implications for research within cognitive neuroscience, animal behavior and learning.