7 resultados para rainfall-runoff empirical statistical model

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mara River Basin (MRB) is endowed with pristine biodiversity, socio-cultural heritage and natural resources. The purpose of my study is to develop and apply an integrated water resource allocation framework for the MRB based on the hydrological processes, water demand and economic factors. The basin was partitioned into twelve sub-basins and the rainfall runoff processes was modeled using the Soil and Water Assessment Tool (SWAT) after satisfactory Nash-Sutcliff efficiency of 0.68 for calibration and 0.43 for validation at Mara Mines station. The impact and uncertainty of climate change on the hydrology of the MRB was assessed using SWAT and three scenarios of statistically downscaled outputs from twenty Global Circulation Models. Results predicted the wet season getting more wet and the dry season getting drier, with a general increasing trend of annual rainfall through 2050. Three blocks of water demand (environmental, normal and flood) were estimated from consumptive water use by human, wildlife, livestock, tourism, irrigation and industry. Water demand projections suggest human consumption is expected to surpass irrigation as the highest water demand sector by 2030. Monthly volume of water was estimated in three blocks of current minimum reliability, reserve (>95%), normal (80–95%) and flood (40%) for more than 5 months in a year. The assessment of water price and marginal productivity showed that current water use hardly responds to a change in price or productivity of water. Finally, a water allocation model was developed and applied to investigate the optimum monthly allocation among sectors and sub-basins by maximizing the use value and hydrological reliability of water. Model results demonstrated that the status on reserve and normal volumes can be improved to ‘low’ or ‘moderate’ by updating the existing reliability to meet prevailing demand. Flow volumes and rates for four scenarios of reliability were presented. Results showed that the water allocation framework can be used as comprehensive tool in the management of MRB, and possibly be extended similar watersheds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study explores factors related to the prompt difficulty in Automated Essay Scoring. The sample was composed of 6,924 students. For each student, there were 1-4 essays, across 20 different writing prompts, for a total of 20,243 essays. E-rater® v.2 essay scoring engine developed by the Educational Testing Service was used to score the essays. The scoring engine employs a statistical model that incorporates 10 predictors associated with writing characteristics of which 8 were used. The Rasch partial credit analysis was applied to the scores to determine the difficulty levels of prompts. In addition, the scores were used as outcomes in the series of hierarchical linear models (HLM) in which students and prompts constituted the cross-classification levels. This methodology was used to explore the partitioning of the essay score variance.^ The results indicated significant differences in prompt difficulty levels due to genre. Descriptive prompts, as a group, were found to be more difficult than the persuasive prompts. In addition, the essay score variance was partitioned between students and prompts. The amount of the essay score variance that lies between prompts was found to be relatively small (4 to 7 percent). When the essay-level, student-level-and prompt-level predictors were included in the model, it was able to explain almost all variance that lies between prompts. Since in most high-stakes writing assessments only 1-2 prompts per students are used, the essay score variance that lies between prompts represents an undesirable or "noise" variation. Identifying factors associated with this "noise" variance may prove to be important for prompt writing and for constructing Automated Essay Scoring mechanisms for weighting prompt difficulty when assigning essay score.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The financial community is well aware that continued underfunding of state and local government pension plans poses many public policy and fiduciary management concerns. However, a well-defined theoretical rationale has not been developed to explain why and how public sector pension plans underfund. This study uses three methods: a survey of national pension experts, an incomplete covariance panel method, and field interviews.^ A survey of national public sector pension experts was conducted to provide a conceptual framework by which underfunding could be evaluated. Experts suggest that plan design, fiscal stress, and political culture factors impact underfunding. However, experts do not agree with previous research findings that unions actively pursue underfunding to secure current wage increases.^ Within the conceptual framework and determinants identified by experts, several empirical regularities are documented for the first time. Analysis of 173 local government pension plans, observed from 1987 to 1992, was conducted. Findings indicate that underfunding occurs in plans that have lower retirement ages, increased costs due to benefit enhancements, when the sponsor faces current year operating deficits, or when a local government relies heavily on inelastic revenue sources. Results also suggest that elected officials artificially inflate interest rate assumptions to reduce current pension costs, consequently shifting these costs to future generations. In concurrence with some experts there is no data to support the assumption that highly unionized employees secure more funding than less unionized employees.^ Empirical results provide satisfactory but not overwhelming statistical power, and only minor predictive capacity. To further explore why underfunding occurs, field interviews were carried out with 62 local government officials. Practitioners indicated that perceived fiscal stress, the willingness of policymakers to advance funding, bargaining strategies used by union officials, apathy by employees and retirees, pension board composition, and the level of influence by internal pension experts has an impact on funding outcomes.^ A pension funding process model was posited by triangulating the expert survey, empirical findings, and field survey results. The funding process model should help shape and refine our theoretical knowledge of state and local government pension underfunding in the future. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Crash reduction factors (CRFs) are used to estimate the potential number of traffic crashes expected to be prevented from investment in safety improvement projects. The method used to develop CRFs in Florida has been based on the commonly used before-and-after approach. This approach suffers from a widely recognized problem known as regression-to-the-mean (RTM). The Empirical Bayes (EB) method has been introduced as a means to addressing the RTM problem. This method requires the information from both the treatment and reference sites in order to predict the expected number of crashes had the safety improvement projects at the treatment sites not been implemented. The information from the reference sites is estimated from a safety performance function (SPF), which is a mathematical relationship that links crashes to traffic exposure. The objective of this dissertation was to develop the SPFs for different functional classes of the Florida State Highway System. Crash data from years 2001 through 2003 along with traffic and geometric data were used in the SPF model development. SPFs for both rural and urban roadway categories were developed. The modeling data used were based on one-mile segments that contain homogeneous traffic and geometric conditions within each segment. Segments involving intersections were excluded. The scatter plots of data show that the relationships between crashes and traffic exposure are nonlinear, that crashes increase with traffic exposure in an increasing rate. Four regression models, namely, Poisson (PRM), Negative Binomial (NBRM), zero-inflated Poisson (ZIP), and zero-inflated Negative Binomial (ZINB), were fitted to the one-mile segment records for individual roadway categories. The best model was selected for each category based on a combination of the Likelihood Ratio test, the Vuong statistical test, and the Akaike's Information Criterion (AIC). The NBRM model was found to be appropriate for only one category and the ZINB model was found to be more appropriate for six other categories. The overall results show that the Negative Binomial distribution model generally provides a better fit for the data than the Poisson distribution model. In addition, the ZINB model was found to give the best fit when the count data exhibit excess zeros and over-dispersion for most of the roadway categories. While model validation shows that most data points fall within the 95% prediction intervals of the models developed, the Pearson goodness-of-fit measure does not show statistical significance. This is expected as traffic volume is only one of the many factors contributing to the overall crash experience, and that the SPFs are to be applied in conjunction with Accident Modification Factors (AMFs) to further account for the safety impacts of major geometric features before arriving at the final crash prediction. However, with improved traffic and crash data quality, the crash prediction power of SPF models may be further improved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examined Kirkpatrick’s training evaluation model (Kirkpatrick & Kirkpatrick, 2006) by assessing a sales training program conducted at an organization in the hospitality industry. The study assessed the employees’ training outcomes of knowledge and skills, job performance, and the impact of the training upon the organization. By assessing these training outcomes and their relationships, the study demonstrated whether Kirkpatrick’s theories are supported and the lower evaluation levels can be used to predict organizational impact. The population for this study was a group of reservations sales agents from a leading luxury hotel chain’s reservations center. During the study period from January 2005 to May 2007, there were 335 reservations sales agents employed in this Global Reservations Center (GRC). The number of reservations sales agents who had completed a sales training program/intervention during this period and had data available for at least two months pre and post training composed the sample for this study. The number of agents was 69 ( N = 69). Four hypotheses were tested through paired-samples t tests, correlation, and hierarchical regression analytic procedures. Results from the analyses supported the hypotheses in this study. The significant improvement in the call score supported hypothesis one that the reservations sales agents who completed the training improved their knowledge of content and required skills in handling calls (Level 2). Hypothesis two was accepted in part as there was significant improvement in call conversion, but there was no significant improvement of time usage. The significant improvement in the sales per call supported hypothesis three that the reservations agents who completed the training contributed to increased organizational impact (Level 4), i.e., made significantly more sales. Last, findings supported hypothesis four that Level 2 and Level 3 variables can be used for predicting Level 4 organizational impact. The findings supported the theory of Kirkpatrick’s evaluation model that in order to expect organizational results, a positive change in behavior (job performance) and learning must occur. The examinations of Levels 2 and 3 helped to partially explain and predict Level 4 results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Major portion of hurricane-induced economic loss originates from damages to building structures. The damages on building structures are typically grouped into three main categories: exterior, interior, and contents damage. Although the latter two types of damages, in most cases, cause more than 50% of the total loss, little has been done to investigate the physical damage process and unveil the interdependence of interior damage parameters. Building interior and contents damages are mainly due to wind-driven rain (WDR) intrusion through building envelope defects, breaches, and other functional openings. The limitation of research works and subsequent knowledge gaps, are in most part due to the complexity of damage phenomena during hurricanes and lack of established measurement methodologies to quantify rainwater intrusion. This dissertation focuses on devising methodologies for large-scale experimental simulation of tropical cyclone WDR and measurements of rainwater intrusion to acquire benchmark test-based data for the development of hurricane-induced building interior and contents damage model. Target WDR parameters derived from tropical cyclone rainfall data were used to simulate the WDR characteristics at the Wall of Wind (WOW) facility. The proposed WDR simulation methodology presents detailed procedures for selection of type and number of nozzles formulated based on tropical cyclone WDR study. The simulated WDR was later used to experimentally investigate the mechanisms of rainwater deposition/intrusion in buildings. Test-based dataset of two rainwater intrusion parameters that quantify the distribution of direct impinging raindrops and surface runoff rainwater over building surface — rain admittance factor (RAF) and surface runoff coefficient (SRC), respectively —were developed using common shapes of low-rise buildings. The dataset was applied to a newly formulated WDR estimation model to predict the volume of rainwater ingress through envelope openings such as wall and roof deck breaches and window sill cracks. The validation of the new model using experimental data indicated reasonable estimation of rainwater ingress through envelope defects and breaches during tropical cyclones. The WDR estimation model and experimental dataset of WDR parameters developed in this dissertation work can be used to enhance the prediction capabilities of existing interior damage models such as the Florida Public Hurricane Loss Model (FPHLM).^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study analyzed hydro-climatic and land use sensitivities of stormwater runoff and quality in the complex coastal urban watershed of Miami River Basin, Florida by developing a Storm Water Management Model (EPA SWMM 5). Regression-based empirical models were also developed to explain stream water quality in relation to internal (land uses and hydrology) and external (upstream contribution, seawater) sources and drivers in six highly urbanized canal basins of Southeast Florida. Stormwater runoff and quality were most sensitive to rainfall, imperviousness, and conversion of open lands/parks to residential, commercial and industrial areas. In-stream dissolved oxygen and total phosphorus in the watersheds were dictated by internal stressors while external stressors were dominant for total nitrogen and specific conductance. The research findings and tools will be useful for proactive monitoring and management of storm runoff and urban stream water quality under the changing climate and environment in South Florida and around the world.