5 resultados para quantum confinement effects
em Digital Commons at Florida International University
Resumo:
This dissertation reports experimental studies of nonlinear optical effects manifested by electromagnetically induced transparency (EIT) in cold Rb atoms. The cold Rb atoms are confined in a magneto-optic trap (MOT) obtained with the standard laser cooling and trapping technique. Because of the near zero Doppler shift and a high phase density, the cold Rb sample is well suited for studies of atomic coherence and interference and related applications, and the experiments can be compared quantitatively with theoretical calculations. It is shown that with EIT induced in the multi-level Rb system by laser fields, the linear absorption is suppressed and the nonlinear susceptibility is enhanced, which enables studies of nonlinear optics in the cold atoms with slow photons and at low light intensities. Three independent experiments are described and the experimental results are presented. First, an experimental method that can produce simultaneously co-propagating slow and fast light pulses is discussed and the experimental demonstration is reported. Second, it is shown that in a three-level Rb system coupled by multi-color laser fields, the multi-channel two-photon Raman transitions can be manipulated by the relative phase and frequency of a control laser field. Third, a scheme for all-optical switching near single photon levels is developed. The scheme is based on the phase-dependent multi-photon interference in a coherently coupled four-level system. The phase dependent multi-photon interference is observed and switching of a single light pulse by a control pulse containing ∼20 photons is demonstrated. These experimental studies reveal new phenomena manifested by quantum coherence and interference in cold atoms, contribute to the advancement of fundamental quantum optics and nonlinear optics at ultra-low light intensities, and may lead to the development of new techniques to control quantum states of atoms and photons, which will be useful for applications in quantum measurements and quantum photonic devices.
Resumo:
The field of chemical kinetics is an exciting and active field. The prevailing theories make a number of simplifying assumptions that do not always hold in actual cases. Another current problem concerns a development of efficient numerical algorithms for solving the master equations that arise in the description of complex reactions. The objective of the present work is to furnish a completely general and exact theory of reaction rates, in a form reminiscent of transition state theory, valid for all fluid phases and also to develop a computer program that can solve complex reactions by finding the concentrations of all participating substances as a function of time. To do so, the full quantum scattering theory is used for deriving the exact rate law, and then the resulting cumulative reaction probability is put into several equivalent forms that take into account all relativistic effects if applicable, including one that is strongly reminiscent of transition state theory, but includes corrections from scattering theory. Then two programs, one for solving complex reactions, the other for solving first order linear kinetic master equations to solve them, have been developed and tested for simple applications.
Resumo:
Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: (1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (E LUMO) via QSAR modelling and analysis; (2) to validate the models by using internal and external cross-validation techniques; (3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl ) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: (1) Linear or Multi-linear Regression (MLR); (2) Partial Least Squares (PLS); and (3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: (1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; (2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; (3) E LUMO are shown to correlate highly with the NCl for several classes of DBPs; and (4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.
Resumo:
Many coastal wetland communities of south Florida have been cut off from freshwater sheet flow for decades and are migrating landward due to salt-water encroachment. A paleoecological study using mollusks was conducted to assess the rates and effects of salt-water encroachment due to freshwater diversion and sea level rise on coastal wetland basins in Biscayne National Park. Modem mollusk distributions taken from 226 surface sites were used to determine local habitat affinities which were applied to infer past environments from mollusk distributions found in soil cores. Mollusks species compositions were found to be strongly correlated to habitat and salinity, providing reliable predictions. Wetland soils were cored to bedrock at 36locations. Mollusks were abundant throughout the cores and 15 of the 20 most abundant taxa served as bioindicators of salinity and habitat. Historic accounts coupled with mollusk based inference models indicate (1) increasing salinity levels along the coast and encroaching into the interior with mangroves communities currently migrating westward, (2) replacement of a mixed graminoid-mangrove zone by a dense monoculture of dwarf mangroves, and (3) a confinement of freshwater and freshwater graminoid marsh to landward areas between urban developments and drainage canals.
Resumo:
Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: 1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (ELUMO) via QSAR modelling and analysis; 2) to validate the models by using internal and external cross-validation techniques; 3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: 1) Linear or Multi-linear Regression (MLR); 2) Partial Least Squares (PLS); and 3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: 1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; 2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; 3) ELUMO are shown to correlate highly with the NCl for several classes of DBPs; and 4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.