2 resultados para protoplasts fusion

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consistent leadership of group travel by specific individuals has been documented in many animals. Most species exhibiting this type of leadership have relatively stable group membership. Animals using fission-fusion grouping are not expected to use specific leaders because associations would not be frequent. Certain conditions, however, may allow this type of control over group travel to occur. First, a population would need to be small enough to allow regular associations between individuals. Second, leadership may be useful if the environment where the population in question lives is complex and requires learning to access the resources efficiently. To determine whether fission-fusion species existing under these conditions utilize specific individual leadership, I examined a small residential population of bottlenose dolphins (Tursiops truncatus) in the Lower Florida Keys (LFK) where the benthic habitat is highly complex. My goals were to (1) determine whether specific individuals in this population led group travel more often than expected; (2) determine whether certain factors predicted which animals would lead most often and (3) investigate the benefits of leading to leaders and to followers in a fission-fusion society. Multiple types of data were collected to answer questions posed including dolphin behavior (for leadership analyses), fish sampling (to examine dolphin habitat use under leadership), and dolphin biopsy sampling (for genetic analyses). Results of analyses provided strong evidence for consistent leadership in this population. Leaders were female, most were mothers and on average they had larger measures of centrality within the LFK population. Leaders benefited by leading individuals who were more closely related than expected. Followers benefited from efficient access to profitable habitat. Results build on previous leadership research by expanding our knowledge about the type of species in which specific individuals lead and predictors for what types of individuals may lead. Additionally, results provide the first detailed information about benefits group members obtain by both leading and following.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Post transcriptional gene silencing (PTGS) is a mechanism harnessed by plant biologists to knock down gene expression. siRNAs contribute to PTGS that are synthesized from mRNAs or viral RNAs and function to guide cellular endoribonucleases to target mRNAs for degradation. Plant biologists have employed electroporation to deliver artificial siRNAs to plant protoplasts to study gene expression mechanisms at the single cell level. One drawback of electroporation is the extensive loss of viable protoplasts that occurs as a result of the transfection technology. Results We employed fluorescent conjugated polymer nanoparticles (CPNs) to deliver siRNAs and knockdown a target gene in plant protoplasts. CPNs are non toxic to protoplasts, having little impact on viability over a 72 h period. Microscopy and flow cytometry reveal that CPNs can penetrate protoplasts within 2 h of delivery. Cellular uptake of CPNs/siRNA complexes were easily monitored using epifluorescence microscopy. We also demonstrate that CPNs can deliver siRNAs targeting specific genes in the cellulose biosynthesis pathway (NtCesA-1a and NtCesA-1b). Conclusions While prior work showed that NtCesA-1 is a factor involved in cell wall synthesis in whole plants, we demonstrate that the same gene plays an essential role in cell wall regeneration in isolated protoplasts. Cell wall biosynthesis is central to cell elongation, plant growth and development. The experiments presented here shows that NtCesA is also a factor in cell viability. We show that CPNs are valuable vehicles for delivering siRNAs to plant protoplasts to study vital cellular pathways at the single cell level.