7 resultados para product ignition and inhibit
em Digital Commons at Florida International University
Resumo:
This research sought to determine the implications of a non-traded differentiated commodity produced with increasing returns to scale, for the welfare of countries that allowed free international migration. We developed two- and three-country Ricardian models in which labor was the only factor of production. The countries traded freely in homogeneous goods produced with constant returns to scale. Each also had a non-traded differentiated good sector where production took place using increasing returns to scale technology. Then we allowed for free international migration between two of the countries and observed what happened to welfare in both countries as indicated by their per capita utilities in the new equilibrium relative to their pre-migration utilities. ^ Preferences of consumers were represented by a two-tier utility function [Dixit and Stiglitz 1977]. As migration took place it impacted utility in two ways. The expanding country enjoyed the positive effect of increased product diversity in the non-traded good sector. However, it also suffered adverse terms-of-trade as its production cost declined. The converse was true for the contracting country. To determine the net impact on welfare we derived indirect per capita utility functions of the countries algebraically and graphically. Then we juxtaposed the graphs of the utility functions to obtain possible general equilibria. These we used to observe the welfare outcomes. ^ We found that the most likely outcomes were either that both countries gained, or one country lost while the other gained. We were, however, able to generate cases where both countries lost as a result of allowing free inter-country migration. This was most likely to happen when the shares of income spent on each country's export good differed significantly. In the three country world when we allowed two of the countries to engage in preferential trading arrangements while imposing a prohibitive tariff on imports from the third country welfare of the partner countries declined. When inter-union migration was permitted welfare declined even further. This we showed was due to the presence of the non-traded good sector. ^
Resumo:
Social responsibility (SR) is becoming an increasingly significant component of many firms’ strategic planning decisions. Research has shown that consumers tend to reward socially responsible behavior. However, there has been little testing of the construct in the hospitality industry. Additionally, when other important variables that influence consumer brand loyalty are considered, will brand social responsibility image (BSRI) still play a significant role? This study investigates the importance of SR and its impact on brand loyalty, relative to product quality and service quality in the quick-service restaurant industry. The authors were also interested to learn whether BSRI impacted consumers' image of product and service quality. It was found that BSRI had a positive impact on brand loyalty, product quality, and service quality. However, product quality was a significantly stronger predictor of brand loyalty than BSRI. Where the vast majority of studies of SR have utilized scenario analysis of hypothetical firms, this study utilizes consumers' perceptions of a real-world firm.
Resumo:
Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the lower temperature range investigated. With respect to leachability, the experimental final NAC ceramic waste form is comparable to the final product of vitrification, the technology chosen by DOE to treat these wastes. As the NAC process has the potential of reducing the volume of nitrate-based radioactive liquid waste by as much as 70 percent, it not only promises to enhance environmental remediation efforts but also effect substantial cost savings. ^
Resumo:
Parallel processing is prevalent in many manufacturing and service systems. Many manufactured products are built and assembled from several components fabricated in parallel lines. An example of this manufacturing system configuration is observed at a manufacturing facility equipped to assemble and test web servers. Characteristics of a typical web server assembly line are: multiple products, job circulation, and paralleling processing. The primary objective of this research was to develop analytical approximations to predict performance measures of manufacturing systems with job failures and parallel processing. The analytical formulations extend previous queueing models used in assembly manufacturing systems in that they can handle serial and different configurations of paralleling processing with multiple product classes, and job circulation due to random part failures. In addition, appropriate correction terms via regression analysis were added to the approximations in order to minimize the gap in the error between the analytical approximation and the simulation models. Markovian and general type manufacturing systems, with multiple product classes, job circulation due to failures, and fork and join systems to model parallel processing were studied. In the Markovian and general case, the approximations without correction terms performed quite well for one and two product problem instances. However, it was observed that the flow time error increased as the number of products and net traffic intensity increased. Therefore, correction terms for single and fork-join stations were developed via regression analysis to deal with more than two products. The numerical comparisons showed that the approximations perform remarkably well when the corrections factors were used in the approximations. In general, the average flow time error was reduced from 38.19% to 5.59% in the Markovian case, and from 26.39% to 7.23% in the general case. All the equations stated in the analytical formulations were implemented as a set of Matlab scripts. By using this set, operations managers of web server assembly lines, manufacturing or other service systems with similar characteristics can estimate different system performance measures, and make judicious decisions - especially setting delivery due dates, capacity planning, and bottleneck mitigation, among others.
Resumo:
The contractile state of microcirculatory vessels is a major determinant of the blood pressure of the whole systemic circulation. Continuous bi-directional communication exists between the endothelial cells (ECs) and smooth muscle cells (SMCs) that regulates calcium (Ca2+) dynamics in these cells. This study presents theoretical approaches to understand some of the important and currently unresolved microcirculatory phenomena. ^ Agonist induced events at local sites have been shown to spread long distances in the microcirculation. We have developed a multicellular computational model by integrating detailed single EC and SMC models with gap junction and nitric oxide (NO) coupling to understand the mechanisms behind this effect. Simulations suggest that spreading vasodilation mainly occurs through Ca 2+ independent passive conduction of hyperpolarization in RMAs. Model predicts a superior role for intercellular diffusion of inositol (1,4,5)-trisphosphate (IP3) than Ca2+ in modulating the spreading response. ^ Endothelial derived signals are initiated even during vasoconstriction of stimulated SMCs by the movement of Ca2+ and/or IP3 into the EC which provide hyperpolarizing feedback to SMCs to counter the ongoing constriction. Myoendothelial projections (MPs) present in the ECs have been recently proposed to play a role in myoendothelial feedback. We have developed two models using compartmental and 2D finite element methods to examine the role of these MPs by adding a sub compartment in the EC to simulate MP with localization of intermediate conductance calcium activated potassium channels (IKCa) and IP3 receptors (IP 3R). Both models predicted IP3 mediated high Ca2+ gradients in the MP after SMC stimulation with limited global spread. This Ca 2+ transient generated a hyperpolarizing feedback of ∼ 2–3mV. ^ Endothelium derived hyperpolarizing factor (EDHF) is the dominant form of endothelial control of SMC constriction in the microcirculation. A number of factors have been proposed for the role of EDHF but no single pathway is agreed upon. We have examined the potential of myoendothelial gap junctions (MEGJs) and potassium (K+) accumulation as EDHF using two models (compartmental and 2D finite element). An extra compartment is added in SMC to simulate micro domains (MD) which have NaKα2 isoform sodium potassium pumps. Simulations predict that MEGJ coupling is much stronger in producing EDHF than alone K+ accumulation. On the contrary, K+ accumulation can alter other important parameters (EC V m, IKCa current) and inhibit its own release as well as EDHF conduction via MEGJs. The models developed in this study are essential building blocks for future models and provide important insights to the current understanding of myoendothelial feedback and EDHF.^
Resumo:
In the discussion - Ethics, Value Systems And The Professionalization Of Hoteliers by K. Michael Haywood, Associate Professor, School of Hotel and Food Administration, University of Guelph, Haywood initially presents: “Hoteliers and executives in other service industries should realize that the foundation of success in their businesses is based upon personal and corporate value systems and steady commitment to excellence. The author illustrates how ethical issues and manager morality are linked to, and shaped by the values of executives and the organization, and how improved professionalism can only be achieved through the adoption of a value system that rewards contributions rather than the mere attainment of results.” The bottom line of this discussion is, how does the hotel industry reconcile its behavior with that of public perception? “The time has come for hoteliers to examine their own standards of ethics, value systems, and professionalism,” Haywood says. And it is ethics that are at the center of this issue; Haywood holds that component in an estimable position. “Hoteliers must become value-driven,” advises Haywood. “They must be committed to excellence both in actualizing their best potentialities and in excelling in all they do. In other words, the professionalization of the hotelier can be achieved through a high degree of self-control, internalized values, codes of ethics, and related socialization processes,” he expands. “Serious ethical issues exist for hoteliers as well as for many business people and professionals in positions of responsibility,” Haywood alludes in defining some inter-industry problems. “The acceptance of kickbacks and gifts from suppliers, the hiding of income from taxation authorities, the lack of interest in installing and maintaining proper safety and security systems, and the raiding of competitors' staffs are common practices,” he offers, with the reasoning that if these problems can occur within ranks, then there is going to be a negative backlash in the public/client arena as well. Haywood divides the key principles of his thesis statement - ethics, value systems, and professionalism – into specific elements, and then continues to broaden the scope of each element. Promotion, product/service, and pricing are additional key components in Haywood’s discussion, and he addresses each with verve and vitality. Haywood references the four character types - craftsmen, jungle fighters, company men, and gamesmen – via a citation to Michael Maccoby, in the portion of the discussion dedicated to morality and success. Haywood closes with a series of questions derived from Lawrence Miller's American Spirit, Visions of a New Corporate Culture, each question designed to focus, shape, and organize management's attention to the values that Miller sets forth in his piece.
Resumo:
Parallel processing is prevalent in many manufacturing and service systems. Many manufactured products are built and assembled from several components fabricated in parallel lines. An example of this manufacturing system configuration is observed at a manufacturing facility equipped to assemble and test web servers. Characteristics of a typical web server assembly line are: multiple products, job circulation, and paralleling processing. The primary objective of this research was to develop analytical approximations to predict performance measures of manufacturing systems with job failures and parallel processing. The analytical formulations extend previous queueing models used in assembly manufacturing systems in that they can handle serial and different configurations of paralleling processing with multiple product classes, and job circulation due to random part failures. In addition, appropriate correction terms via regression analysis were added to the approximations in order to minimize the gap in the error between the analytical approximation and the simulation models. Markovian and general type manufacturing systems, with multiple product classes, job circulation due to failures, and fork and join systems to model parallel processing were studied. In the Markovian and general case, the approximations without correction terms performed quite well for one and two product problem instances. However, it was observed that the flow time error increased as the number of products and net traffic intensity increased. Therefore, correction terms for single and fork-join stations were developed via regression analysis to deal with more than two products. The numerical comparisons showed that the approximations perform remarkably well when the corrections factors were used in the approximations. In general, the average flow time error was reduced from 38.19% to 5.59% in the Markovian case, and from 26.39% to 7.23% in the general case. All the equations stated in the analytical formulations were implemented as a set of Matlab scripts. By using this set, operations managers of web server assembly lines, manufacturing or other service systems with similar characteristics can estimate different system performance measures, and make judicious decisions - especially setting delivery due dates, capacity planning, and bottleneck mitigation, among others.