7 resultados para problem solution fit
em Digital Commons at Florida International University
Resumo:
The span of control is the most discussed single concept in classical and modern management theory. In specifying conditions for organizational effectiveness, the span of control has generally been regarded as a critical factor. Existing research work has focused mainly on qualitative methods to analyze this concept, for example heuristic rules based on experiences and/or intuition. This research takes a quantitative approach to this problem and formulates it as a binary integer model, which is used as a tool to study the organizational design issue. This model considers a range of requirements affecting management and supervision of a given set of jobs in a company. These decision variables include allocation of jobs to workers, considering complexity and compatibility of each job with respect to workers, and the requirement of management for planning, execution, training, and control activities in a hierarchical organization. The objective of the model is minimal operations cost, which is the sum of supervision costs at each level of the hierarchy, and the costs of workers assigned to jobs. The model is intended for application in the make-to-order industries as a design tool. It could also be applied to make-to-stock companies as an evaluation tool, to assess the optimality of their current organizational structure. Extensive experiments were conducted to validate the model, to study its behavior, and to evaluate the impact of changing parameters with practical problems. This research proposes a meta-heuristic approach to solving large-size problems, based on the concept of greedy algorithms and the Meta-RaPS algorithm. The proposed heuristic was evaluated with two measures of performance: solution quality and computational speed. The quality is assessed by comparing the obtained objective function value to the one achieved by the optimal solution. The computational efficiency is assessed by comparing the computer time used by the proposed heuristic to the time taken by a commercial software system. Test results show the proposed heuristic procedure generates good solutions in a time-efficient manner.
Resumo:
This research is motivated by the need for considering lot sizing while accepting customer orders in a make-to-order (MTO) environment, in which each customer order must be delivered by its due date. Job shop is the typical operation model used in an MTO operation, where the production planner must make three concurrent decisions; they are order selection, lot size, and job schedule. These decisions are usually treated separately in the literature and are mostly led to heuristic solutions. The first phase of the study is focused on a formal definition of the problem. Mathematical programming techniques are applied to modeling this problem in terms of its objective, decision variables, and constraints. A commercial solver, CPLEX is applied to solve the resulting mixed-integer linear programming model with small instances to validate the mathematical formulation. The computational result shows it is not practical for solving problems of industrial size, using a commercial solver. The second phase of this study is focused on development of an effective solution approach to this problem of large scale. The proposed solution approach is an iterative process involving three sequential decision steps of order selection, lot sizing, and lot scheduling. A range of simple sequencing rules are identified for each of the three subproblems. Using computer simulation as the tool, an experiment is designed to evaluate their performance against a set of system parameters. For order selection, the proposed weighted most profit rule performs the best. The shifting bottleneck and the earliest operation finish time both are the best scheduling rules. For lot sizing, the proposed minimum cost increase heuristic, based on the Dixon-Silver method performs the best, when the demand-to-capacity ratio at the bottleneck machine is high. The proposed minimum cost heuristic, based on the Wagner-Whitin algorithm is the best lot-sizing heuristic for shops of a low demand-to-capacity ratio. The proposed heuristic is applied to an industrial case to further evaluate its performance. The result shows it can improve an average of total profit by 16.62%. This research contributes to the production planning research community with a complete mathematical definition of the problem and an effective solution approach to solving the problem of industry scale.
Resumo:
Smaller class sizes have a positive impact on student achievement but Florida struggles with the problem of how to achieve smaller classes. Through a review of the literature, this paper discusses some of the programs currently used across the US, with the focus on Florida. Conclusions and implications are presented.
Resumo:
The dissertation reports on two studies. The purpose of Study I was to develop and evaluate a measure of cognitive competence (the Critical Problem Solving Skills Scale – Qualitative Extension) using Relational Data Analysis (RDA) with a multi-ethnic, adolescent sample. My study builds on previous work that has been conducted to provide evidence for the reliability and validity of the RDA framework in evaluating youth development programs (Kurtines et al., 2008). Inter-coder percent agreement among the TOC and TCC coders for each of the category levels was moderate to high, with a range of .76 to .94. The Fleiss' kappa across all category levels was from substantial agreement to almost perfect agreement, with a range of .72 to .91. The correlation between the TOC and the TCC demonstrated medium to high correlation, with a range of r(40)=.68, p<.001 to r(40)=.79, p<.001. Study II reports an investigation of a positive youth development program using an Outcome Mediation Cascade (OMC) evaluation model, an integrated model for evaluating the empirical intersection between intervention and developmental processes. The Changing Lives Program (CLP) is a community supported positive youth development intervention implemented in a practice setting as a selective/indicated program for multi-ethnic, multi-problem at risk youth in urban alternative high schools in the Miami Dade County Public Schools (M-DCPS). The 259 participants for this study were drawn from the CLP's archival data file. The study used a structural equation modeling approach to construct and evaluate the hypothesized model. Findings indicated that the hypothesized model fit the data (χ2 (7) = 5.651, p = .83; RMSEA = .00; CFI = 1.00; WRMR = .319). My study built on previous research using the OMC evaluation model (Eichas, 2010), and the findings are consistent with the hypothesis that in addition to having effects on targeted positive outcomes, PYD interventions are likely to have progressive cascading effects on untargeted problem outcomes that operate through effects on positive outcomes.
Resumo:
The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. ^ For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver.^ The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. ^ The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.^
Resumo:
The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver. The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.
Resumo:
The dissertation reports on two studies. The purpose of Study I was to develop and evaluate a measure of cognitive competence (the Critical Problem Solving Skills Scale – Qualitative Extension) using Relational Data Analysis (RDA) with a multi-ethnic, adolescent sample. My study builds on previous work that has been conducted to provide evidence for the reliability and validity of the RDA framework in evaluating youth development programs (Kurtines et al., 2008). Inter-coder percent agreement among the TOC and TCC coders for each of the category levels was moderate to high, with a range of .76 to .94. The Fleiss’ kappa across all category levels was from substantial agreement to almost perfect agreement, with a range of .72 to .91. The correlation between the TOC and the TCC demonstrated medium to high correlation, with a range of r(40)=.68, p Study II reports an investigation of a positive youth development program using an Outcome Mediation Cascade (OMC) evaluation model, an integrated model for evaluating the empirical intersection between intervention and developmental processes. The Changing Lives Program (CLP) is a community supported positive youth development intervention implemented in a practice setting as a selective/indicated program for multi-ethnic, multi-problem at risk youth in urban alternative high schools in the Miami Dade County Public Schools (M-DCPS). The 259 participants for this study were drawn from the CLP’s archival data file. The study used a structural equation modeling approach to construct and evaluate the hypothesized model. Findings indicated that the hypothesized model fit the data (χ2 (7) = 5.651, p = .83; RMSEA = .00; CFI = 1.00; WRMR = .319). My study built on previous research using the OMC evaluation model (Eichas, 2010), and the findings are consistent with the hypothesis that in addition to having effects on targeted positive outcomes, PYD interventions are likely to have progressive cascading effects on untargeted problem outcomes that operate through effects on positive outcomes.