4 resultados para printed circuit boards
em Digital Commons at Florida International University
Resumo:
This research deals with the development of a dynamic job quotation system for printed circuit board (PCB) fabrication, which can estimate the price and completion time of a job based on customer preference and current capacity of the shop floor. The primary purpose of building a dynamic quotation system is to maximize the company's profit by quoting optimum lead-time and competitive price for the day-to-day orders received from different customers and original equipment manufacturers. The system was developed using MS-Access relational database. Evaluating the output of the system it was observed that the dynamic system provided more reliable estimation of the lead-time needed for fabricating new jobs. The overall price quoted by the system was competitive with higher profit margin when compared to traditional static systems. This system would therefore provide a vital link between the job quoting and scheduling system of the firm enabling better utilization of the available resources.
Resumo:
The electronics industry, is experiencing two trends one of which is the drive towards miniaturization of electronic products. The in-circuit testing predominantly used for continuity testing of printed circuit boards (PCB) can no longer meet the demands of smaller size circuits. This has lead to the development of moving probe testing equipment. Moving Probe Test opens up the opportunity to test PCBs where the test points are on a small pitch (distance between points). However, since the test uses probes that move sequentially to perform the test, the total test time is much greater than traditional in-circuit test. While significant effort has concentrated on the equipment design and development, little work has examined algorithms for efficient test sequencing. The test sequence has the greatest impact on total test time, which will determine the production cycle time of the product. Minimizing total test time is a NP-hard problem similar to the traveling salesman problem, except with two traveling salesmen that must coordinate their movements. The main goal of this thesis was to develop a heuristic algorithm to minimize the Flying Probe test time and evaluate the algorithm against a "Nearest Neighbor" algorithm. The algorithm was implemented with Visual Basic and MS Access database. The algorithm was evaluated with actual PCB test data taken from Industry. A statistical analysis with 95% C.C. was performed to test the hypothesis that the proposed algorithm finds a sequence which has a total test time less than the total test time found by the "Nearest Neighbor" approach. Findings demonstrated that the proposed heuristic algorithm reduces the total test time of the test and, therefore, production cycle time can be reduced through proper sequencing.
Resumo:
This research is motivated by a practical application observed at a printed circuit board (PCB) manufacturing facility. After assembly, the PCBs (or jobs) are tested in environmental stress screening (ESS) chambers (or batch processing machines) to detect early failures. Several PCBs can be simultaneously tested as long as the total size of all the PCBs in the batch does not violate the chamber capacity. PCBs from different production lines arrive dynamically to a queue in front of a set of identical ESS chambers, where they are grouped into batches for testing. Each line delivers PCBs that vary in size and require different testing (or processing) times. Once a batch is formed, its processing time is the longest processing time among the PCBs in the batch, and its ready time is given by the PCB arriving last to the batch. ESS chambers are expensive and a bottleneck. Consequently, its makespan has to be minimized. ^ A mixed-integer formulation is proposed for the problem under study and compared to a formulation recently published. The proposed formulation is better in terms of the number of decision variables, linear constraints and run time. A procedure to compute the lower bound is proposed. For sparse problems (i.e. when job ready times are dispersed widely), the lower bounds are close to optimum. ^ The problem under study is NP-hard. Consequently, five heuristics, two metaheuristics (i.e. simulated annealing (SA) and greedy randomized adaptive search procedure (GRASP)), and a decomposition approach (i.e. column generation) are proposed—especially to solve problem instances which require prohibitively long run times when a commercial solver is used. Extensive experimental study was conducted to evaluate the different solution approaches based on the solution quality and run time. ^ The decomposition approach improved the lower bounds (or linear relaxation solution) of the mixed-integer formulation. At least one of the proposed heuristic outperforms the Modified Delay heuristic from the literature. For sparse problems, almost all the heuristics report a solution close to optimum. GRASP outperforms SA at a higher computational cost. The proposed approaches are viable to implement as the run time is very short. ^
Resumo:
The performance of a compact, wearable Conformal Strongly Coupled Magnetic Resonance (CSCMR) system is studied when the antenna is in the air and is worn on a user’s arm. The wireless powering system consists of the receiver and load elements designed on a printed circuit board that is attached to a polyester fabric band. The wearable antenna achieves high efficiency, has a small volume, and can be easily printed on substrates. Although the user effect on mobile terminal antennas has been studied in detail, absorption losses in wearable antennas have not been widely investigated. Our results show that efficiency of the antenna in free space is 70% and on a user’s arm is 50%. Human tissue in the close proximity of our wearable Conformal SCMR caused a decrease in radiated efficiency and total efficiency. This undesired degradation in antenna efficiency might be attributed to body loss and absorption losses. Our findings can be used as a reference for future studies on wearable devices and their applications, such as health and sports monitoring.