5 resultados para precision limit

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Intoxilyzer 5000 was tested for calibration curve linearity for ethanol vapor concentration between 0.020 and 0.400g/210L with excellent linearity. Calibration error using reference solutions outside of the allowed concentration range, response to the same ethanol reference solution at different temperatures between 34 and 38$\sp\circ$C, and its response to eleven chemicals, 10 mixtures of two at the time, and one mixture of four chemicals potentially found in human breath have been evaluated. Potential interferents were chosen on the basis of their infrared signatures and the concentration range of solutions corresponding to the non-lethal blood concentration range of various volatile organic compounds reported in the literature. The result of this study indicates that the instrument calibrates with solutions outside the allowed range up to $\pm$10% of target value. Headspace FID dual column GC analysis was used to confirm the concentrations of the solutions. Increasing the temperature of the reference solution from 34 to 38$\sp\circ$C resulted in linear increases in instrument recorded ethanol readings with an average increase of 6.25%/$\sp\circ$C. Of the eleven chemicals studied during this experiment, six, isopropanol, toluene, methyl ethyl ketone, trichloroethylene, acetaldehyde, and methanol could reasonably interfere with the test at non-lethal reported blood concentration ranges, the mixtures of those six chemicals showed linear additive results with a combined effect of as much as a 0.080g/210L reading (Florida's legal limit) without any ethanol present. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parameter design is an experimental design and analysis methodology for developing robust processes and products. Robustness implies insensitivity to noise disturbances. Subtle experimental realities, such as the joint effect of process knowledge and analysis methodology, may affect the effectiveness of parameter design in precision engineering; where the objective is to detect minute variation in product and process performance. In this thesis, approaches to statistical forced-noise design and analysis methodologies were investigated with respect to detecting performance variations. Given a low degree of process knowledge, Taguchi's methodology of signal-to-noise ratio analysis was found to be more suitable in detecting minute performance variations than the classical approach based on polynomial decomposition. Comparison of inner-array noise (IAN) and outer-array noise (OAN) structuring approaches showed that OAN is a more efficient design for precision engineering. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historically, memory has been evaluated by examining how much is remembered, however a more recent conception of memory focuses on the accuracy of memories. When using this accuracy-oriented conception of memory, unlike with the quantity-oriented approach, memory does not always deteriorate over time. A possible explanation for this seemingly surprising finding lies in the metacognitive processes of monitoring and control. Use of these processes allows people to withhold responses of which they are unsure, or to adjust the precision of responses to a level that is broad enough to be correct. The ability to accurately report memories has implications for investigators who interview witnesses to crimes, and those who evaluate witness testimony. ^ This research examined the amount of information provided, accuracy, and precision of responses provided during immediate and delayed interviews about a videotaped mock crime. The interview format was manipulated such that a single free narrative response was elicited, or a series of either yes/no or cued questions were asked. Instructions provided by the interviewer indicated to the participants that they should either stress being informative, or being accurate. The interviews were then transcribed and scored. ^ Results indicate that accuracy rates remained stable and high after a one week delay. Compared to those interviewed immediately, after a delay participants provided less information and responses that were less precise. Participants in the free narrative condition were the most accurate. Participants in the cued questions condition provided the most precise responses. Participants in the yes/no questions condition were most likely to say “I don’t know”. The results indicate that people are able to monitor their memories and modify their reports to maintain high accuracy. When control over precision was not possible, such as in the yes/no condition, people said “I don’t know” to maintain accuracy. However when withholding responses and adjusting precision were both possible, people utilized both methods. It seems that concerns that memories reported after a long retention interval might be inaccurate are unfounded. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable Speed Limit (VSL) strategies identify and disseminate dynamic speed limits that are determined to be appropriate based on prevailing traffic conditions, road surface conditions, and weather conditions. This dissertation develops and evaluates a shockwave-based VSL system that uses a heuristic switching logic-based controller with specified thresholds of prevailing traffic flow conditions. The system aims to improve operations and mobility at critical bottlenecks. Before traffic breakdown occurrence, the proposed VSL’s goal is to prevent or postpone breakdown by decreasing the inflow and achieving uniform distribution in speed and flow. After breakdown occurrence, the VSL system aims to dampen traffic congestion by reducing the inflow traffic to the congested area and increasing the bottleneck capacity by deactivating the VSL at the head of the congested area. The shockwave-based VSL system pushes the VSL location upstream as the congested area propagates upstream. In addition to testing the system using infrastructure detector-based data, this dissertation investigates the use of Connected Vehicle trajectory data as input to the shockwave-based VSL system performance. Since the field Connected Vehicle data are not available, as part of this research, Vehicle-to-Infrastructure communication is modeled in the microscopic simulation to obtain individual vehicle trajectories. In this system, wavelet transform is used to analyze aggregated individual vehicles’ speed data to determine the locations of congestion. The currently recommended calibration procedures of simulation models are generally based on the capacity, volume and system-performance values and do not specifically examine traffic breakdown characteristics. However, since the proposed VSL strategies are countermeasures to the impacts of breakdown conditions, considering breakdown characteristics in the calibration procedure is important to have a reliable assessment. Several enhancements were proposed in this study to account for the breakdown characteristics at bottleneck locations in the calibration process. In this dissertation, performance of shockwave-based VSL is compared to VSL systems with different fixed VSL message sign locations utilizing the calibrated microscopic model. The results show that shockwave-based VSL outperforms fixed-location VSL systems, and it can considerably decrease the maximum back of queue and duration of breakdown while increasing the average speed during breakdown.