6 resultados para power to moderate

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cities are no longer recognizing their boundaries beyond their legal or political implications. This thesis explored the architecture of a boundary in the design of a structure that visually and symbolically marked the current Miami-Dade County development limit along Krome Avenue. This limit ultimately separates the city from the endangered Everglades ecosystem. Through the examination of ancient boundaries such as Medieval and Renaissance Military fortifications, as well as contemporary interventions such as Steven Holl's "Edge of the City Projects", an architectural vocabulary was developed considering the Double Wall, Bastion, Rampart, and Gate principles. However, rather than considering these principles to defend the city from outside forces, the focus of this exploration is their inversion in order to contain the city by strengthening its periphery visually and symbolically. From this exploration, it was concluded that a successful boundary or limit should be visible and significant. Furthermore, it should serve as an informative and reflective landmark.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study explores how great powers not allied with the United States formulate their grand strategies in a unipolar international system. Specifically, it analyzes the strategies China and Russia have developed to deal with U.S. hegemony by examining how Moscow and Beijing have responded to American intervention in Central Asia. The study argues that China and Russia have adopted a soft balancing strategy of to indirectly balance the United States at the regional level. This strategy uses normative capabilities such as soft power, alternative institutions and regionalization to offset the overwhelming material hardware of the hegemon. The theoretical and methodological approach of this dissertation is neoclassical realism. Chinese and Russian balancing efforts against the United States are based on their domestic dynamics as well as systemic constraints. Neoclassical realism provides a bridge between the internal characteristics of states and the environment which those states are situated. Because China and Russia do not have the hardware (military or economic power) to directly challenge the United States, they must resort to their software (soft power and norms) to indirectly counter American preferences and set the agenda to obtain their own interests. Neoclassical realism maintains that soft power is an extension of hard power and a reflection of the internal makeup of states. The dissertation uses the heuristic case study method to demonstrate the efficacy of soft balancing. Such case studies help to facilitate theory construction and are not necessarily the demonstrable final say on how states behave under given contexts. Nevertheless, it finds that China and Russia have increased their soft power to counterbalance the United States in certain regions of the world, Central Asia in particular. The conclusion explains how soft balancing can be integrated into the overall balance-of-power framework to explain Chinese and Russian responses to U.S. hegemony. It also suggests that an analysis of norms and soft power should be integrated into the study of grand strategy, including both foreign policy and military doctrine.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Higher education is a distribution center of knowledge and economic, social, and cultural power (Cervero & Wilson, 2001). A critical approach to understanding a higher education classroom begins with recognizing the instructor's position of power and authority (Tisdell, Hanley, & Taylor, 2000). The power instructors wield exists mostly unquestioned, allowing for teaching practices that reproduce the existing societal patterns of inequity in the classroom (Brookfield, 2000). ^ The purpose of this hermeneutic phenomenological study was to explore students' experiences with the power of their instructors in a higher education classroom. A hermeneutic phenomenological study intertwines the interpretations of both the participants and the researcher about a lived experience to uncover layers of meaning because the meanings of lived experiences are usually not readily apparent (van Manen, 1990). Fifteen participants were selected using criterion, convenience, and snowball sampling. The primary data gathering method were semi-structured interviews guided by an interview protocol (Creswell, 2003). Data were interpreted using thematic reflection (van Manen, 1990). ^ Three themes emerged from data interpretation: (a) structuring of instructor-student relationships, (b) connecting power to instructor personality, and (c) learning to navigate the terrains of higher education. How interpersonal relationships were structured in a higher education classroom shaped how students perceived power in that higher education classroom. Positive relationships were described using the metaphor of family and a perceived ethic of caring and nurturing by the instructor. As participants were consistently exposed to exercises of instructor power in a higher education classroom, they attributed those exercises of power to particular instructor traits rather than systemic exercises of power. As participants progressed from undergraduate to graduate studies, they perceived the benefits of expertise in content or knowledge development as secondary to expertise in successfully navigating the social, cultural, political, and interpersonal terrains of higher education. Ultimately, participants expressed that higher education is not about what you know; it is about learning how to play the game. Implications for teaching in higher education and considerations for future research conclude the study.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless powering methods must be devised. The optimization of wireless power transfer via Strongly Coupled Magnetic Resonance (SCMR) to sensors embedded in concrete is studied here. First, we analytically derive the optimal geometric parameters for transmission of power in the air. This specifically leads to the identification of the local and global optimization parameters and conditions, it was validated through electromagnetic simulations. Second, the optimum conditions were employed in the model for propagation of energy through plain and reinforced concrete at different humidity conditions, and frequencies with extended Debye's model. This analysis leads to the conclusion that SCMR can be used to efficiently power sensors in plain and reinforced concrete at different humidity levels and depth, also validated through electromagnetic simulations. The optimization of wireless power transmission via SMCR to Wearable and Implantable Medical Device (WIMD) are also explored. The optimum conditions from the analytics were used in the model for propagation of energy through different human tissues. This analysis shows that SCMR can be used to efficiently transfer power to sensors in human tissue without overheating through electromagnetic simulations, as excessive power might result in overheating of the tissue. Standard SCMR is sensitive to misalignment; both 2-loops and 3-loops SCMR with misalignment-insensitive performances are presented. The power transfer efficiencies above 50% was achieved over the complete misalignment range of 0°-90° and dramatically better than typical SCMR with efficiencies less than 10% in extreme misalignment topologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless powering methods must be devised. The optimization of wireless power transfer via Strongly Coupled Magnetic Resonance (SCMR) to sensors embedded in concrete is studied here. First, we analytically derive the optimal geometric parameters for transmission of power in the air. This specifically leads to the identification of the local and global optimization parameters and conditions, it was validated through electromagnetic simulations. Second, the optimum conditions were employed in the model for propagation of energy through plain and reinforced concrete at different humidity conditions, and frequencies with extended Debye's model. This analysis leads to the conclusion that SCMR can be used to efficiently power sensors in plain and reinforced concrete at different humidity levels and depth, also validated through electromagnetic simulations. The optimization of wireless power transmission via SMCR to Wearable and Implantable Medical Device (WIMD) are also explored. The optimum conditions from the analytics were used in the model for propagation of energy through different human tissues. This analysis shows that SCMR can be used to efficiently transfer power to sensors in human tissue without overheating through electromagnetic simulations, as excessive power might result in overheating of the tissue. Standard SCMR is sensitive to misalignment; both 2-loops and 3-loops SCMR with misalignment-insensitive performances are presented. The power transfer efficiencies above 50% was achieved over the complete misalignment range of 0°-90° and dramatically better than typical SCMR with efficiencies less than 10% in extreme misalignment topologies.