2 resultados para population data

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

As traffic congestion exuberates and new roadway construction is severely constrained because of limited availability of land, high cost of land acquisition, and communities' opposition to the building of major roads, new solutions have to be sought to either make roadway use more efficient or reduce travel demand. There is a general agreement that travel demand is affected by land use patterns. However, traditional aggregate four-step models, which are the prevailing modeling approach presently, assume that traffic condition will not affect people's decision on whether to make a trip or not when trip generation is estimated. Existing survey data indicate, however, that differences exist in trip rates for different geographic areas. The reasons for such differences have not been carefully studied, and the success of quantifying the influence of land use on travel demand beyond employment, households, and their characteristics has been limited to be useful to the traditional four-step models. There may be a number of reasons, such as that the representation of influence of land use on travel demand is aggregated and is not explicit and that land use variables such as density and mix and accessibility as measured by travel time and congestion have not been adequately considered. This research employs the artificial neural network technique to investigate the potential effects of land use and accessibility on trip productions. Sixty two variables that may potentially influence trip production are studied. These variables include demographic, socioeconomic, land use and accessibility variables. Different architectures of ANN models are tested. Sensitivity analysis of the models shows that land use does have an effect on trip production, so does traffic condition. The ANN models are compared with linear regression models and cross-classification models using the same data. The results show that ANN models are better than the linear regression models and cross-classification models in terms of RMSE. Future work may focus on finding a representation of traffic condition with existing network data and population data which might be available when the variables are needed to in prediction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lognormal distribution has abundant applications in various fields. In literature, most inferences on the two parameters of the lognormal distribution are based on Type-I censored sample data. However, exact measurements are not always attainable especially when the observation is below or above the detection limits, and only the numbers of measurements falling into predetermined intervals can be recorded instead. This is the so-called grouped data. In this paper, we will show the existence and uniqueness of the maximum likelihood estimators of the two parameters of the underlying lognormal distribution with Type-I censored data and grouped data. The proof was first established under the case of normal distribution and extended to the lognormal distribution through invariance property. The results are applied to estimate the median and mean of the lognormal population.