2 resultados para population capacity

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid population increase and booming economic growth have caused a significant escalation in car ownership in many cities, leading to additional or, multiple traffic problems on congested roadways. The increase of automobiles is generating a significant amount of congestion and pollution in many cities. It has become necessary to find a solution to the ever worsening traffic problems in our cities. Building more roadways is nearly impossible due to the limitations of right-of-way in cities. Studies have shown that guideway transit could provide effective transportation and could stimulate land development. The Medium-Capacity Guideway Transit (MCGT) is one of the alternatives to solve this problem. The objective of this research was to better understand the characteristics of MCGT systems, to investigate the existing MCGT systems around the world and determine the main factors behind the planning of successful systems, and to develop a MCGT planning guide. The factors utilized in this study were determined and were analyzed using Excel. A MCGT Planning Guide was developed using Microsoft Visual Basic. ^ A MCGT was defined as a transit system whose capacity can carry up to 20,000 passengers per hour per direction (pphpd). The results shown that Light Rail Transit (LRT) is favored when peak hour demand is less than 13,000 pphpd. Automated People Mover (APM) is favored when the peak hour demand is more than 18,000 pphpd. APM systems could save up to three times the waiting time cost compared to that of the LRT. If comfort and convenience are important, then using an APM does make sense. However, if cost is the critical factor, then LRT will make more sense because it is reasonable service at a reasonable price. If travel time and safety (accident/crush) costs were included in calculating life-cycle “total” costs, the capital cost advantage of LRT disappeared and APM could become very competitive. The results also included a range of cost-performance criteria for MCGT systems that help planners, engineers, and decision-makers to select the most feasible system for their respective areas. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Meals on Wheels (MOW) program is designed to help combat hunger in persons needing assistance. MOW has a duty not only to provide food but also to ensure that it reaches eligible clients safely. Given the population that MOW serves, transporting food safely takes on increased importance. This experiment focused on the major food safety issue of maintaining temperature integrity through the use of transport containers. For containers that did not contain electric heating elements, several factors influenced how fast the food temperature fell. Those factors included the U-value and size of the container as well as how many meals were in the container. As predicted, the smaller the U-value, the longer it took the temperature to fall. Larger containers did better at maintaining food temperatures, provided they were fully loaded. In general, fully loaded small and medium containers were better at maintaining food temperatures than larger containers loaded with the same number of meals.