17 resultados para plant communities
em Digital Commons at Florida International University
Resumo:
Disturbances alter competitive hierarchies by reducing populations and altering resource regimes. The interaction between disturbance and resource availability may strongly influence the structure of plant communities, as observed in the recolonization of seagrass beds in outer Florida Bay that were denuded by sea-urchin overgrazing. There is no consensus concerning the interaction between disturbance and resource availability on competition intensity (CI). On the other hand, species diversity is dependent on both factors. Peaks in species diversity have been observed to occur when both resource availability and disturbance intensity are high, thus implying that CI is low. Based on this supposition of previous models, I presented the resource-disturbance hypothesis as a graphical model to make predictions of CI as a function of both disturbance intensity and the availability of a limiting resource. The predictions of this model were tested in two experiments within a seagrass community in south Florida, in which transplants of Halodule wrightii were placed into near-monocultures of Syringodium filiforme in a full-factorial array. In the first experiment, two measures of relative CI were calculated based on the changes in the short-shoot number (SS) and of rhizome length (RHL) on the transplants. Both light and disturbance were identified as important factors, though the interaction between light * disturbance was not significant. Relative CISS ranged between 0.2 and 1.0 for the high light and high disturbance treatments and the relative CIRHL < 0 for the same treatments, though results were not significantly different due to high variability and low sample size. These results, including a contour schematic using six data points from the different treatment combinations, preliminarily suggests that the resource-disturbance hypothesis may be used may be used as a next step in developing our understanding of the mechanisms involved in structuring plant communities. Furthermore, the focus of the model is on the outcome of CI, which may be a useful predictor of changes in species diversity. Further study is needed to confirm the results of this study and validate the usefulness of this model in other systems. ^
Resumo:
We conducted a low-level phosphorus (P) enrichment study in two oligotrophic freshwater wetland communities (wet prairies [WP] and sawgrass marsh [SAW]) of the neotropical Florida Everglades. The experiment included three P addition levels (0, 3.33, and 33.3 mg P m2 month1), added over 2 years, and used in situ mesocosms located in northeastern Everglades National Park, Fla., USA. The calcareous periphyton mat in both communities degraded quickly and was replaced by green algae. In the WP community, we observed significant increases in net aboveground primary production (NAPP) and belowground biomass. Aboveground live standing crop (ALSC) did not show a treatment effect, though, because stem turnover rates of Eleocharis spp., the dominant emergent macrophyte in this community, increased significantly. Eleocharis spp. leaf tissue P content decreased with P additions, causing higher C:P and N:P ratios in enriched versus unenriched plots. In the SAW community, NAPP, ALSC, and belowground biomass all increased significantly in response to P additions. Cladium jamaicense leaf turnover rates and tissue nutrient content did not show treatment effects. The two oligotrophic communities responded differentially to P enrichment. Periphyton which was more abundant in the WP community, appeared to act as a P buffer that delayed the response of other ecosystem components until after the periphyton mat had disappeared. Periphyton played a smaller role in controlling ecosystem dynamics and community structure in the SAW community. Our data suggested a reduced reliance on internal stores of P by emergent macrophytes in the WP that were exposed to P enrichment. Eleocharis spp. rapidly recycled P through more rapid aboveground turnover. In contrast, C. jamaicense stored added P by initially investing in belowground biomass, then shifting growth allocation to aboveground tissue without increasing leaf turnover rates. Our results suggest that calcareous wetland systems throughout the Caribbean, and oligotrophic ecosystems in general, respond rapidly to low-level additions of their limiting nutrient.
Resumo:
Tree islands in the Everglades wetlands are centers of biodiversity and targets of restoration, yet little is known about the pattern of water source utilization by the constituent woody plant communities: upland hammocks and flooded swamp forests. Two potential water sources exist: (1) entrapped rainwater in the vadose zone of the organic soil (referred to as upland soil water), that becomes enriched in phosphorus, and (2) phosphorus-poor groundwater/surface water (referred to as regional water). Using natural stable isotope abundance as a tracer, we observed that hammock plants used upland soil water in the wet season and shifted to regional water uptake in the dry season, while swamp forest plants used regional water throughout the year. Consistent with the previously observed phosphorus concentrations of the two water sources, hammock plants had a greater annual mean foliar phosphorus concentration over swamp forest plants, thereby supporting the idea that tree island hammocks are islands of high phosphorus concentrations in the oligotrophic Everglades. Foliar nitrogen levels in swamp forest plants were higher than those of hammock plants. Linking water sources with foliar nutrient concentrations can indicate nutrient sources and periods of nutrient uptake, thereby linking hydrology with the nutrient regimes of different plant communities in wetland ecosystems. Our results are consistent with the hypotheses that (1) over long periods, upland tree island communities incrementally increase their nutrient concentration by incorporating marsh nutrients through transpiration seasonally, and (2) small differences in micro-topography in a wetland ecosystem can lead to large differences in water and nutrient cycles.
Resumo:
A comprehensive, broadly accepted vegetation classification is important for ecosystem management, particularly for planning and monitoring. South Florida vegetation classification systems that are currently in use were largely arrived at subjectively and intuitively with the involvement of experienced botanical observers and ecologists, but with little support in terms of quantitative field data. The need to develop a field data-driven classification of South Florida vegetation that builds on the ecological organization has been recognized by the National Park Service and vegetation practitioners in the region. The present work, funded by the National Park Service Inventory and Monitoring Program - South Florida/Caribbean Network (SFCN), covers the first stage of a larger project whose goal is to apply extant vegetation data to test, and revise as necessary, an existing, widely used classification (Rutchey et al. 2006). The objectives of the first phase of the project were (1) to identify useful existing datasets, (2) to collect these data and compile them into a geodatabase, (3) to conduct an initial classification analysis of marsh sites, and (4) to design a strategy for augmenting existing information from poorly represented landscapes in order to develop a more comprehensive south Florida classification.
Patterns of phosphorus, nitrogen and 15N along a peat development gradient in a coastal mire, Panama
Resumo:
Differentiation of limiting nutrients within small spatial scales has been observed in coastal mangrove forests, but research on other tropical peatlands suggests it is a more widespread phenomenon. In the Changuinola mire of coastal Panama, oligotrophy was hypothesized to increase along a gradient of peat development (peat doming). Nutrient and carbon concentration of leaf tissue, soil, and soil porewater were characterised over a successive sequence of plant communities along the gradient. Soil phosphorus (P) and nitrogen (N) concentrations decreased from 1200 g P g1 and 27 mg N g1 to 377 g P g1 and 22 mg N g1 within 2.7 km into the mire interior. These changes coincided with an increase in soil and average leaf N:P molar ratios from 52128 and 2441, respectively. Soil P was strongly related to leaf P and soil N:P to foliar N:P. There was a wide range in 15N values for canopy (4.0 to 9.4), Campnosperma panamense (4.0 to 7.8) and understorey (4.8 to 3.1) species. Foliar 15N values of canopy species were strongly related to soil N:P, soil P and leaf P. The depleted foliar 15N values appeared to be an effect of both the N atmospheric source and P limitation. Here, P limitation is likely associated with ombrotrophic conditions that developed as hydrologic inputs became dominated by precipitation.
Resumo:
Transpiration-driven nutrient accumulation has been identified as a potential mechanism governing the creation and maintenance of wetland vegetation patterning. This process may contribute to the formation of nutrient-rich tree islands within the expansive oligotrophic marshes of the Everglades (Florida, United States). This study presents hydrogeochemical data indicating that tree root water uptake is a primary driver of groundwater ion accumulation across one of these islands. Sap flow, soil moisture, water level, water chemistry, and rainfall were measured to identify the relationships between climate, transpiration, and groundwater uptake by phreatophytes and to examine the effect this uptake has on groundwater chemistry and mineral formation in three woody plant communities of differing elevations. During the dry season, trees relied more on groundwater for transpiration, which led to a depressed water table and the advective movement of groundwater and dissolved ions, including phosphorus, from the surrounding marsh towards the centre of the island. Ion exclusion during root water uptake led to elevated concentrations of all major dissolved ions in the tree island groundwater compared with the adjacent marsh. Groundwater was predominately supersaturated with respect to aragonite and calcite in the lower-elevation woody communities, indicating the potential for soil formation. Elevated groundwater phosphorous concentrations detected in the highest-elevation woody community were associated with the leaching of inorganic sediments (i.e. hydroxyapatite) in the vadose zone. Understanding the complex feedback mechanisms regulating plant/groundwater/surface water interactions, nutrient dynamics, and potential soil formation is necessary to manage and restore patterned wetlands such as the Everglades.
Resumo:
In the southern Everglades, vegetation in both the marl prairie and ridge and slough landscapes is sensitive to large-scale restoration activities associated with the Comprehensive Everglades Restoration Plan (CERP) authorized by the Water Resources Development Act (WRDA) 2000 to restore the south Florida ecosystem. More specifically, changes in hydrologic regimes at both local and landscape scales are likely to affect vegetation composition along marl prairie-slough gradient resulting in a shift in boundary between plant communities in these landscapes. To strengthen our ability to assess how vegetation would respond to changes in underlying ecosystem drivers along the gradient, an improved understanding of reference conditions of plant community structure and function, and their responses to major stressors is important. In this regard, a study of vegetation structure and composition in relation to physical and biological processes along the marl prairie-slough gradient was initiated in 2005, and has continued through 2012 with funding from US Army Corps of Engineers (USACOE) (Cooperative Agreement # W912HZ-09-2-0018 Modification No.: P00002). This study addresses the hypothesis with respect to RECOVER-MAP monitoring item 3.1.3.5 Marl Prairie/Slough Gradients; patterns and trends in Shark Slough marshes and associated marl prairies.
Resumo:
The purpose of this project was to evaluate the use of remote sensing 1) to detect and map Everglades wetland plant communities at different scales; and 2) to compare map products delineated and resampled at various scales with the intent to quantify and describe the quantitative and qualitative differences between such products. We evaluated data provided by Digital Globes WorldView 2 (WV2) sensor with a spatial resolution of 2m and data from Landsats Thematic and Enhanced Thematic Mapper (TM and ETM+) sensors with a spatial resolution of 30m. We were also interested in the comparability and scalability of products derived from these data sources. The adequacy of each data set to map wetland plant communities was evaluated utilizing two metrics: 1) model-based accuracy estimates of the classification procedures; and 2) design-based post-classification accuracy estimates of derived maps.
Resumo:
Increasing atmospheric CO2 concentrations associated with climate change will likely influence a wide variety of ecosystems. Terrestrial research has examined the effects of increasing CO2 concentrations on the functionality of plant systems; with studies ranging in scale from the short-term responses of individual leaves, to long-term ecological responses of complete forests. While terrestrial plants have received much attention, studies on the responses of marine plants (seagrasses) to increased CO 2(aq) concentrations remain relatively sparse, with most research limited to small-scale, ex situ experimentation. Furthermore, few studies have attempted to address similarities between terrestrial and seagrass responses to increases in CO2(aq). The goals of this dissertation are to expand the scope of marine climate change research, and examine how the tropical seagrass, Thalassia testudinum responds to increasing CO 2(aq)concentrations over multiple spatial and temporal scales. ^ Manipulative laboratory and field experimentation reveal that, similar to terrestrial plants, seagrasses strongly respond to increases in CO 2(aq) concentrations. Using a novel field technique, in situ field manipulations show that over short time scales, seagrasses respond to elevated CO2(aq) by increasing leaf photosynthetic rates and the production of soluble carbohydrates. Declines in leaf nutrient (nitrogen and phosphorus) content were additionally detected, paralleling responses from terrestrial systems. Over long time scales, seagrasses increase total above- and belowground biomass with elevated CO2(aq), suggesting that, similar to terrestrial research, pervasive increases in atmospheric and oceanic CO2(aq) concentrations stand to influence the productivity and functionality of these systems. Furthermore, field experiments reveal that seagrass epiphytes, which comprise an important component of seagrass ecosystems, additionally respond to increased CO2(aq) with strong declines in calcified taxa and increases in fleshy taxa. ^ Together, this work demonstrates that increasing CO2(aq) concentrations will alter the functionality of seagrass ecosystems by increasing plant productivity and shifting the composition of the epiphyte community. These results have implications for future rates of carbon storage and sediment production within these widely distributed systems.^
Resumo:
Fire is a globally distributed disturbance that impacts terrestrial ecosystems and has been proposed to be a global herbivore. Fire, like herbivory, is a top-down driver that converts organic materials into inorganic products, alters community structure, and acts as an evolutionary agent. Though grazing and fire may have some comparable effects in grasslands, they do not have similar impacts on species composition and community structure. However, the concept of fire as a global herbivore implies that fire and herbivory may have similar effects on plant functional traits. Using 22 years of data from a mesic, native tallgrass prairie with a long evolutionary history of fire and grazing, we tested if trait composition between grazed and burned grassland communities would converge, and if the degree of convergence depended on fire frequency. Additionally, we tested if eliminating fire from frequently burned grasslands would result in a state similar to unburned grasslands, and if adding fire into a previously unburned grassland would cause composition to become more similar to that of frequently burned grasslands. We found that grazing and burning once every four years showed the most convergence in traits, suggesting that these communities operate under similar deterministic assembly rules and that fire and herbivory are similar disturbances to grasslands at the trait-group level of organization. Three years after reversal of the fire treatment we found that fire reversal had different effects depending on treatment. The formerly unburned community that was then burned annually became more similar to the annually burned community in trait composition suggesting that function may be rapidly restored if fire is reintroduced. Conversely, after fire was removed from the annually burned community trait composition developed along a unique trajectory indicating hysteresis, or a time lag for structure and function to return following a change in this disturbance regime. We conclude that functional traits and species-based metrics should be considered when determining and evaluating goals for fire management in mesic grassland ecosystems.
Resumo:
Developing a framework for assessing interactions between multiple anthropogenic stressors remains an important goal in environmental research. In coastal ecosystems, the relative effects of aspects of global climate change (e.g. CO2 concentrations) and localized stressors (e.g. eutrophication), in combination, have received limited attention. Using a long-term (11 month) field experiment, we examine how epiphyte assemblages in a tropical seagrass meadow respond to factorial manipulations of dissolved carbon dioxide (CO2(aq)) and nutrient enrichment. In situ CO2(aq) manipulations were conducted using clear, open-top chambers, which replicated carbonate parameter forecasts for the year 2100. Nutrient enrichment consisted of monthly additions of slow-release fertilizer, nitrogen (N) and phosphorus (P), to the sediments at rates equivalent to theoretical maximum rates of anthropogenic loading within the region (1.54 g N m2 d1 and 0.24 g P m2 d1). Epiphyte community structure was assessed on a seasonal basis and revealed declines in the abundance of coralline algae, along with increases in filamentous algae under elevated CO2(aq). Surprisingly, nutrient enrichment had no effect on epiphyte community structure or overall epiphyte loading. Interactions between CO2(aq) and nutrient enrichment were not detected. Furthermore, CO2(aq)-mediated responses in the epiphyte community displayed strong seasonality, suggesting that climate change studies in variable environments should be conducted over extended time-scales. Synthesis. The observed responses indicate that for certain locations, global stressors such as ocean acidification may take precedence over local eutrophication in altering the community structure of seagrass epiphyte assemblages. Given that nutrient-driven algal overgrowth is commonly cited as a widespread cause of seagrass decline, our findings highlight that alternate climate change forces may exert proximate control over epiphyte community structure.
Resumo:
Understanding the relationships between hydrology and salinity and plant community structure and production is critical to allow predictions of wetland responses to altered water management, changing precipitation patterns and rising sea-level. We addressed how salinity, water depth, hydroperiod, canal inflows, and local precipitation control marsh macrophyte aboveground net primary production (ANPP) and structure in the coastal ecotone of the southern Everglades. We contrasted responses in two watersheds - Taylor Slough (TS) and C-111 - systems that have and will continue to experience changes in water management. Based on long-term trajectories in plant responses, we found continued evidence of increasing water levels and length of inundation in the C-111 watershed south of the C-111 canal. We also found strong differentiation among sites in upper TS that was dependent on hydrology. Finally, salinity, local precipitation and freshwater discharge from upstream explained over 80 % of the variance in Cladium ANPP at a brackish water site in TS. Moreover, our study showed that, while highly managed, the TS and C-111 watersheds maintain legacies in spatial pattern that would facilitate hydrologic restoration. Based on the trajectories in Cladium and Eleocharis, shifts in plant community structure could occur within 510 years of sustained water management change.
Resumo:
In the fall of 2005, U.S. Fish and Wildlife Services (USFWS) contracted with Florida International University (FIU) to study the physical and biological drivers underlying the distribution of woody plant species in the marl prairie habitat of the Cape Sable Seaside Sparrow (CSSS). This report presents what we have learned about woody plant encroachment based on studies carried out during the period 2006-2008. The freshwater marl prairie habitat currently occupied by the Cape Sable seaside sparrow (CSSS; Ammodramus maritimus mirabilis) is a dynamic mosaic comprised of species-rich grassland communities and tree islands of various sizes, densities and compositions. Landscape heterogeneity and the scale of vegetative components across the marl prairie is primarily determined by hydrologic conditions, biological factors (e.g. dispersal and growth morphology), and disturbances such as fire. The woody component of the marl prairie landscape is subject to expansion through multiple positive feedback mechanisms, which may be initiated by recent land use change (e.g. drainage). Because sparrows are known to avoid areas where the woody component is too extensive, a better understanding of invasion dynamics is needed to ensure proper management.