9 resultados para performance measurements
em Digital Commons at Florida International University
Resumo:
The purpose of this study is to identify the determinants of local officials' preferences of performance measures under the assumption that public officials' consensus on performance measures can enhance the accountability in public service delivery. This research consists of two steps: multiple case studies and a survey. The author conducted the case studies in five general-purpose municipalities in Florida, interviewing 25 local officials, attending community meetings, and reviewing relevant local documents. Based on the case studies and the relevant literature, a survey was developed and sent to 445 local officials in 67 general-purpose municipalities in Dade, Broward, and Palm Beach Counties, Florida. The findings of the case studies and the survey suggest that local officials' preferences of performance measures are influenced by their perception of utilities of performance measures and their desire to measure the achievement of organizational goals. The author concludes that a consensus among local officials for outcome-oriented performance measures is easier to achieve if a prospective performance measurement system is designed for reporting and management purposes rather than for budgeting purposes. ^
Resumo:
Combustion-generated carbon black nano particles, or soot, have both positive and negative effects depending on the application. From a positive point of view, it is used as a reinforcing agent in tires, black pigment in inks, and surface coatings. From a negative point of view, it affects performance and durability of many combustion systems, it is a major contributor of global warming, and it is linked to respiratory illness and cancer. Laser-Induced Incandescence (LII) was used in this study to measure soot volume fractions in four steady and twenty-eight pulsed ethylene diffusion flames burning at atmospheric pressure. A laminar coflow diffusion burner combined with a very-high-speed solenoid valve and control circuit provided unsteady flows by forcing the fuel flow with frequencies between 10 Hz and 200 Hz. Periodic flame oscillations were captured by two-dimensional phase-locked LII images and broadband luminosity images for eight phases (0° – 360°) covering each period. A comparison between the steady and pulsed flames and the effect of the pulsation frequency on soot volume fraction in the flame region and the post flame region are presented. The most significant effect of pulsing frequency was observed at 10 Hz. At this frequency, the flame with the lowest mean flow rate had 1.77 times enhancement in peak soot volume fraction and 1.2 times enhancement in total soot volume fraction; whereas the flame with the highest mean flow rate had no significant change in the peak soot volume fraction and 1.4 times reduction in the total soot volume fraction. A correlation (fvRe-1 = a + b·Str) for the total soot volume fraction in the flame region for the unsteady laminar ethylene flames was obtained for the pulsation frequency between 10 Hz and 200 Hz, and the Reynolds number between 37 and 55. The soot primary particle size in steady and unsteady flames was measured using the Time-Resolved Laser-Induced Incandescence (TIRE-LII) and the double-exponential fit method. At maximum frequency (200 Hz), the soot particles were smaller in size by 15% compared to the steady case in the flame with the highest mean flow rate.
Resumo:
The purpose of this study was to investigate which affective factors of adolescent high school readers were related to high-level readers, middle-level readers and low-level readers. The research problem was to determine the relationship between adolescent high school students' self-perceived reading self-efficacy factors and the students' reading performance on a standardized reading assessment considering demographic factors of age, gender and socio-economic status as covariates. The research design was ex post facto making inferences without direct intervention. The sample was obtained from one large, diverse, urban high school, consisting of 9th and 10th grade adolescent students (N = 176). Students voluntarily completed a self-report, reading self-efficacy survey. School records were used to obtain standardized reading level scores, age, gender, and socio-economic status data. An exploratory factor analysis of the self-efficacy survey responses resulted in the identification of 7 underlying factors. The striving (low-level) readers had significantly lower self-perceptions on 5 of the 7 affective factors than the middle-level readers, and strong (high-level) readers, p < .05. The 5 affective factors on which the striving readers had significantly lower self-perceptions were: (a) Observational Comparison, (b) Progress, (c) Lack of Progress, (d) Lack of Anxiety, and (e) Positive Social Feedback. The 2 affective factors which were not significantly different for reader level were Anxiety and Negative Social Feedback. Girls had significantly less anxiety than boys for both of the factors in the Anxiety category. Statistical results showed that none of the demographic covariates tested; age, gender, or socio-economic status, moderated the relationship between affective reader self-efficacy factors and reader level. This study concluded that there were distinguishable differences for striving, middle, and strong readers' self-efficacy factors. Determining affective factors related to reading can be used to create better instructional environments and instruction for adolescent students.
Resumo:
Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.
Resumo:
The climate of a school can be defined as the set of internal characteristics that distinguishes one school from another and influences the behavior of its members (Hoy & Hannum, 1997). Schools with a positive climate have been shown to positively impact students (Hoy, 1972). A principal’s leadership style influences the climate that, in turn, impacts student performance. ^ In this work, the researcher investigated Miami-Dade County Public Schools in order to determine if there was a relationship between instructional staff members’ perceptions of their school’s principals, a derivative of the district’s school climate studies, and their schools’ grades. ^ Eight School Climate Survey items were inter-correlated. The smallest intercorrelation was .83, which is still a large intercorrelation, and the largest intercorrelation was .96. Pearson’s correlation analysis (Healey, 2004) was run to determine the relationship between schools’ earned points and averaged survey responses. Survey items 8, 9, 12 and 13 had weak (less than .30) positive correlations to schools’ earned points. Survey items 7, 10, 11 and 14 had moderate (above .30) positive correlations to schools’ earned points. ^ The researcher created a composite variable (Pallant, 2007) from all the School Climate Survey responses. This composite variable, titled Principal Leadership Score, allowed the researcher to determine that approximately 9% of the variance in the points earned by schools in 2009 can be accounted for by how teachers in this study perceived the leadership of their principals. ^ This study’s findings of a moderate positive correlation between teachers’ perceptions of principal leadership and school performance supports earlier research linking school climate and school performance. Due to the fact that the leadership of the principal affects, either positively or negatively, the learning and working environment of students and teachers, it is recommended that principals use the eight School Climate Survey items examined within this study as guides (Pepper & Thomas, 2002). Through focusing on these survey items, principals may be propelled to self-identify their leadership strengths as well as leadership weaknesses.^
Resumo:
This study examined the relationships between gifted selection criteria used in the Dade County Public Schools of Miami, Florida and performance in sixth grade gifted science classes.^ The goal of the study was to identify significant predictors of performance in sixth grade gifted science classes. Group comparisons of performance were also made. Performance in sixth grade gifted science was defined as the numeric average of nine weeks' grades earned in sixth grade gifted science classes.^ The sample consisted of 100 subjects who were formerly enrolled in sixth grade gifted science classes over two years at a large, multiethnic public middle school in Dade County.^ The predictors analyzed were I.Q. score (all scales combined), full scale I.Q. score, verbal scale I.Q. score, performance scale I.Q. score, combined Stanford Achievement Test (SAT) score (Reading Comprehension plus Math Applications), SAT Reading Comprehension score, and SAT Math Applications score. Combined SAT score and SAT Math Applications score were significantly positively correlated to performance in sixth grade gifted science. Performance scale I.Q. score was significantly negatively correlated to performance in sixth grade gifted science. The other predictors examined were not significantly correlated to performance.^ Group comparison results showed the mean average of nine weeks grades for the full scale I.Q. group was greater than the verbal and performance scale I.Q. groups. Females outperformed males to a highly significant level. Mean g.p.a. for ethnic groups was greatest for Asian students, followed by white non-Hispanic, Hispanic, and black. Students not receiving a lunch subsidy outperformed those receiving subsidies.^ Comparisons of performance based on gifted qualification plan showed the mean g.p.a. for traditional plan and Plan B groups were not different. Mean g.p.a. for students who qualified for gifted using automatic Math Applications criteria was highest, followed by automatic Reading Comprehension criteria and Plan B Matrix score. Both automatic qualification groups outperformed the traditional group. The traditional group outperformed the Plan B Matrix group. No significant differences in mean g.p.a. between the Plan B subgroups and the traditional plan group were found. ^
Resumo:
There is a national need to increase the STEM-related workforce. Among factors leading towards STEM careers include the number of advanced high school mathematics and science courses students complete. Florida's enrollment patterns in STEM-related Advanced Placement (AP) courses, however, reveal that only a small percentage of students enroll into these classes. Therefore, screening tools are needed to find more students for these courses, who are academically ready, yet have not been identified. The purpose of this study was to investigate the extent to which scores from a national standardized test, Preliminary Scholastic Assessment Test/ National Merit Qualifying Test (PSAT/NMSQT), in conjunction with and compared to a state-mandated standardized test, Florida Comprehensive Assessment Test (FCAT), are related to selected AP exam performance in Seminole County Public Schools. An ex post facto correlational study was conducted using 6,189 student records from the 2010 - 2012 academic years. Multiple regression analyses using simultaneous Full Model testing showed differential moderate to strong relationships between scores in eight of the nine AP courses (i.e., Biology, Environmental Science, Chemistry, Physics B, Physics C Electrical, Physics C Mechanical, Statistics, Calculus AB and BC) examined. For example, the significant unique contribution to overall variance in AP scores was a linear combination of PSAT Math (M), Critical Reading (CR) and FCAT Reading (R) for Biology and Environmental Science. Moderate relationships for Chemistry included a linear combination of PSAT M, W (Writing) and FCAT M; a combination of FCAT M and PSAT M was most significantly associated with Calculus AB performance. These findings have implications for both research and practice. FCAT scores, in conjunction with PSAT scores, can potentially be used for specific STEM-related AP courses, as part of a systematic approach towards AP course identification and placement. For courses with moderate to strong relationships, validation studies and development of expectancy tables, which estimate the probability of successful performance on these AP exams, are recommended. Also, findings established a need to examine other related research issues including, but not limited to, extensive longitudinal studies and analyses of other available or prospective standardized test scores.
Resumo:
Combustion-generated carbon black nano particles, or soot, have both positive and negative effects depending on the application. From a positive point of view, it is used as a reinforcing agent in tires, black pigment in inks, and surface coatings. From a negative point of view, it affects performance and durability of many combustion systems, it is a major contributor of global warming, and it is linked to respiratory illness and cancer. Laser-Induced Incandescence (LII) was used in this study to measure soot volume fractions in four steady and twenty-eight pulsed ethylene diffusion flames burning at atmospheric pressure. A laminar coflow diffusion burner combined with a very-high-speed solenoid valve and control circuit provided unsteady flows by forcing the fuel flow with frequencies between 10 Hz and 200 Hz. Periodic flame oscillations were captured by two-dimensional phase-locked LII images and broadband luminosity images for eight phases (0°- 360°) covering each period. A comparison between the steady and pulsed flames and the effect of the pulsation frequency on soot volume fraction in the flame region and the post flame region are presented. The most significant effect of pulsing frequency was observed at 10 Hz. At this frequency, the flame with the lowest mean flow rate had 1.77 times enhancement in peak soot volume fraction and 1.2 times enhancement in total soot volume fraction; whereas the flame with the highest mean flow rate had no significant change in the peak soot volume fraction and 1.4 times reduction in the total soot volume fraction. A correlation (ƒv Reˉ1 = a+b· Str) for the total soot volume fraction in the flame region for the unsteady laminar ethylene flames was obtained for the pulsation frequency between 10 Hz and 200 Hz, and the Reynolds number between 37 and 55. The soot primary particle size in steady and unsteady flames was measured using the Time-Resolved Laser-Induced Incandescence (TIRE-LII) and the double-exponential fit method. At maximum frequency (200 Hz), the soot particles were smaller in size by 15% compared to the steady case in the flame with the highest mean flow rate.
Resumo:
Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.