2 resultados para pattern matching protocols

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

To promote regional or mutual improvement, numerous interjurisdictional efforts to share tax bases have been attempted. Most of these efforts fail to be consummated. Motivations to share revenues include: narrowing fiscal disparities, enhancing regional cooperation and economic development, rationalizing land-use, and minimizing revenue losses caused by competition to attract and keep businesses. Various researchers have developed theories to aid understanding of why interjurisdictional cooperation efforts succeed or fail. Walter Rosenbaum and Gladys Kammerer studied two contemporaneous Florida local-government consolidation attempts. Boyd Messinger subsequently tested their Theory of Successful Consolidation on nine consolidation attempts. Paul Peterson's dual theories on Modern Federalism posit that all governmental levels attempt to further economic development and that politicians act in ways that either further their futures or cement job security. Actions related to the latter theory often interfere with the former. Samuel Nunn and Mark Rosentraub sought to learn how interjurisdictional cooperation evolves. Through multiple case studies they developed a model framing interjurisdictional cooperation in four dimensions. ^ This dissertation investigates the ability of the above theories to help predict success or failure of regional tax-base revenue sharing attempts. A research plan was formed that used five sequenced steps to gather data, analyze it, and conclude if hypotheses concerning the application of these theories were valid. The primary analytical tools were: multiple case studies, cross-case analysis, and pattern matching. Data was gathered from historical records, questionnaires, and interviews. ^ The results of this research indicate that Rosenbaum-Kammerer theory can be a predictor of success or failure in implementing tax-base revenue sharing if it is amended as suggested by Messinger and further modified by a recommendation in this dissertation. Peterson's Functional and Legislative theories considered together were able to predict revenue sharing proposal outcomes. Many of the indicators of interjurisdictional cooperation forwarded in the Nunn-Rosentraub model appeared in the cases studied, but the model was not a reliable forecasting instrument. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The promise of Wireless Sensor Networks (WSNs) is the autonomous collaboration of a collection of sensors to accomplish some specific goals which a single sensor cannot offer. Basically, sensor networking serves a range of applications by providing the raw data as fundamentals for further analyses and actions. The imprecision of the collected data could tremendously mislead the decision-making process of sensor-based applications, resulting in an ineffectiveness or failure of the application objectives. Due to inherent WSN characteristics normally spoiling the raw sensor readings, many research efforts attempt to improve the accuracy of the corrupted or "dirty" sensor data. The dirty data need to be cleaned or corrected. However, the developed data cleaning solutions restrict themselves to the scope of static WSNs where deployed sensors would rarely move during the operation. Nowadays, many emerging applications relying on WSNs need the sensor mobility to enhance the application efficiency and usage flexibility. The location of deployed sensors needs to be dynamic. Also, each sensor would independently function and contribute its resources. Sensors equipped with vehicles for monitoring the traffic condition could be depicted as one of the prospective examples. The sensor mobility causes a transient in network topology and correlation among sensor streams. Based on static relationships among sensors, the existing methods for cleaning sensor data in static WSNs are invalid in such mobile scenarios. Therefore, a solution of data cleaning that considers the sensor movements is actively needed. This dissertation aims to improve the quality of sensor data by considering the consequences of various trajectory relationships of autonomous mobile sensors in the system. First of all, we address the dynamic network topology due to sensor mobility. The concept of virtual sensor is presented and used for spatio-temporal selection of neighboring sensors to help in cleaning sensor data streams. This method is one of the first methods to clean data in mobile sensor environments. We also study the mobility pattern of moving sensors relative to boundaries of sub-areas of interest. We developed a belief-based analysis to determine the reliable sets of neighboring sensors to improve the cleaning performance, especially when node density is relatively low. Finally, we design a novel sketch-based technique to clean data from internal sensors where spatio-temporal relationships among sensors cannot lead to the data correlations among sensor streams.