14 resultados para pacs: data handling techniques

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nation's freeway systems are becoming increasingly congested. A major contribution to traffic congestion on freeways is due to traffic incidents. Traffic incidents are non-recurring events such as accidents or stranded vehicles that cause a temporary roadway capacity reduction, and they can account for as much as 60 percent of all traffic congestion on freeways. One major freeway incident management strategy involves diverting traffic to avoid incident locations by relaying timely information through Intelligent Transportation Systems (ITS) devices such as dynamic message signs or real-time traveler information systems. The decision to divert traffic depends foremost on the expected duration of an incident, which is difficult to predict. In addition, the duration of an incident is affected by many contributing factors. Determining and understanding these factors can help the process of identifying and developing better strategies to reduce incident durations and alleviate traffic congestion. A number of research studies have attempted to develop models to predict incident durations, yet with limited success. ^ This dissertation research attempts to improve on this previous effort by applying data mining techniques to a comprehensive incident database maintained by the District 4 ITS Office of the Florida Department of Transportation (FDOT). Two categories of incident duration prediction models were developed: "offline" models designed for use in the performance evaluation of incident management programs, and "online" models for real-time prediction of incident duration to aid in the decision making of traffic diversion in the event of an ongoing incident. Multiple data mining analysis techniques were applied and evaluated in the research. The multiple linear regression analysis and decision tree based method were applied to develop the offline models, and the rule-based method and a tree algorithm called M5P were used to develop the online models. ^ The results show that the models in general can achieve high prediction accuracy within acceptable time intervals of the actual durations. The research also identifies some new contributing factors that have not been examined in past studies. As part of the research effort, software code was developed to implement the models in the existing software system of District 4 FDOT for actual applications. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electronic database handling of buisness information has gradually gained its popularity in the hospitality industry. This article provides an overview on the fundamental concepts of a hotel database and investigates the feasibility of incorporating computer-assisted data mining techniques into hospitality database applications. The author also exposes some potential myths associated with data mining in hospitaltiy database applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Automatic Vehicle Location (AVL) system is a computer-based vehicle tracking system that is capable of determining a vehicle's location in real time. As a major technology of the Advanced Public Transportation System (APTS), AVL systems have been widely deployed by transit agencies for purposes such as real-time operation monitoring, computer-aided dispatching, and arrival time prediction. AVL systems make a large amount of transit performance data available that are valuable for transit performance management and planning purposes. However, the difficulties of extracting useful information from the huge spatial-temporal database have hindered off-line applications of the AVL data. ^ In this study, a data mining process, including data integration, cluster analysis, and multiple regression, is proposed. The AVL-generated data are first integrated into a Geographic Information System (GIS) platform. The model-based cluster method is employed to investigate the spatial and temporal patterns of transit travel speeds, which may be easily translated into travel time. The transit speed variations along the route segments are identified. Transit service periods such as morning peak, mid-day, afternoon peak, and evening periods are determined based on analyses of transit travel speed variations for different times of day. The seasonal patterns of transit performance are investigated by using the analysis of variance (ANOVA). Travel speed models based on the clustered time-of-day intervals are developed using important factors identified as having significant effects on speed for different time-of-day periods. ^ It has been found that transit performance varied from different seasons and different time-of-day periods. The geographic location of a transit route segment also plays a role in the variation of the transit performance. The results of this research indicate that advanced data mining techniques have good potential in providing automated techniques of assisting transit agencies in service planning, scheduling, and operations control. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Groundwater systems of different densities are often mathematically modeled to understand and predict environmental behavior such as seawater intrusion or submarine groundwater discharge. Additional data collection may be justified if it will cost-effectively aid in reducing the uncertainty of a model's prediction. The collection of salinity, as well as, temperature data could aid in reducing predictive uncertainty in a variable-density model. However, before numerical models can be created, rigorous testing of the modeling code needs to be completed. This research documents the benchmark testing of a new modeling code, SEAWAT Version 4. The benchmark problems include various combinations of density-dependent flow resulting from variations in concentration and temperature. The verified code, SEAWAT, was then applied to two different hydrological analyses to explore the capacity of a variable-density model to guide data collection. ^ The first analysis tested a linear method to guide data collection by quantifying the contribution of different data types and locations toward reducing predictive uncertainty in a nonlinear variable-density flow and transport model. The relative contributions of temperature and concentration measurements, at different locations within a simulated carbonate platform, for predicting movement of the saltwater interface were assessed. Results from the method showed that concentration data had greater worth than temperature data in reducing predictive uncertainty in this case. Results also indicated that a linear method could be used to quantify data worth in a nonlinear model. ^ The second hydrological analysis utilized a model to identify the transient response of the salinity, temperature, age, and amount of submarine groundwater discharge to changes in tidal ocean stage, seasonal temperature variations, and different types of geology. The model was compared to multiple kinds of data to (1) calibrate and verify the model, and (2) explore the potential for the model to be used to guide the collection of data using techniques such as electromagnetic resistivity, thermal imagery, and seepage meters. Results indicated that the model can be used to give insight to submarine groundwater discharge and be used to guide data collection. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, non-integrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. ^ A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. ^ One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, nonintegrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This single-case study provides a description and explanation of selected adult students' perspectives on the impact that the development of an experiential learning portfolio had on their understanding of their professional and personal lives. The conceptual framework that undergirded the study included theoretical and empirical studies on adult learning, experiential learning, and the academic quality of nontraditional degree programs with a portfolio component. The study employed qualitative data collection techniques of individual interviews, document review, field notes, and researcher journal. A purposive sample of 8 adult students who completed portfolios as a component of their undergraduate degrees participated in the study. The 4 male and 4 female students who were interviewed represented 4 ethnic/racial groups and ranged in age from 32 to 55 years. Each student's portfolio was read prior to the interview to frame the semi-structured interview questions in light of written portfolio documents. ^ Students were interviewed twice over a 3-month period. The study lasted 8 months from data collection to final presentation of the findings. The data from interview transcriptions and student portfolios were analyzed, categorized, coded, and sorted into 4 major themes and 2 additional themes and submitted to interpretive analysis. ^ Participants' attitudes, perceptions, and opinions of their learning from the portfolio development experience were presented in the findings, which were illustrated through the use of excerpts from interview responses and individual portfolios. The participants displayed a positive reaction to the learning they acquired from the portfolio development process, regardless of their initial concerns about the challenges of creating a portfolio. Concerns were replaced by a greater recognition and understanding of their previous professional and personal accomplishments and their ability to reach future goals. Other key findings included (a) a better understanding of the role work played in their learning and development, (b) a deeper recognition of the impact of mentors and role models throughout their lives, (c) an increase in writing and organizational competencies, and (d) a sense of self-discovery and personal empowerment. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With advances in science and technology, computing and business intelligence (BI) systems are steadily becoming more complex with an increasing variety of heterogeneous software and hardware components. They are thus becoming progressively more difficult to monitor, manage and maintain. Traditional approaches to system management have largely relied on domain experts through a knowledge acquisition process that translates domain knowledge into operating rules and policies. It is widely acknowledged as a cumbersome, labor intensive, and error prone process, besides being difficult to keep up with the rapidly changing environments. In addition, many traditional business systems deliver primarily pre-defined historic metrics for a long-term strategic or mid-term tactical analysis, and lack the necessary flexibility to support evolving metrics or data collection for real-time operational analysis. There is thus a pressing need for automatic and efficient approaches to monitor and manage complex computing and BI systems. To realize the goal of autonomic management and enable self-management capabilities, we propose to mine system historical log data generated by computing and BI systems, and automatically extract actionable patterns from this data. This dissertation focuses on the development of different data mining techniques to extract actionable patterns from various types of log data in computing and BI systems. Four key problems—Log data categorization and event summarization, Leading indicator identification , Pattern prioritization by exploring the link structures , and Tensor model for three-way log data are studied. Case studies and comprehensive experiments on real application scenarios and datasets are conducted to show the effectiveness of our proposed approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid growth of the Internet and the advancements of the Web technologies have made it possible for users to have access to large amounts of on-line music data, including music acoustic signals, lyrics, style/mood labels, and user-assigned tags. The progress has made music listening more fun, but has raised an issue of how to organize this data, and more generally, how computer programs can assist users in their music experience. An important subject in computer-aided music listening is music retrieval, i.e., the issue of efficiently helping users in locating the music they are looking for. Traditionally, songs were organized in a hierarchical structure such as genre->artist->album->track, to facilitate the users’ navigation. However, the intentions of the users are often hard to be captured in such a simply organized structure. The users may want to listen to music of a particular mood, style or topic; and/or any songs similar to some given music samples. This motivated us to work on user-centric music retrieval system to improve users’ satisfaction with the system. The traditional music information retrieval research was mainly concerned with classification, clustering, identification, and similarity search of acoustic data of music by way of feature extraction algorithms and machine learning techniques. More recently the music information retrieval research has focused on utilizing other types of data, such as lyrics, user-access patterns, and user-defined tags, and on targeting non-genre categories for classification, such as mood labels and styles. This dissertation focused on investigating and developing effective data mining techniques for (1) organizing and annotating music data with styles, moods and user-assigned tags; (2) performing effective analysis of music data with features from diverse information sources; and (3) recommending music songs to the users utilizing both content features and user access patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Public opinion polls in the United States reveal that a great majority of Americans are aware and show concern about ecological issues and the need to preserve natural areas. In South Florida, natural resources have been subjected to enormous strain as the pressure to accommodate a growing population has led to rapid development. Suburbs have been built on areas that were once natural wetlands and farmlands, and the impact today shows a landscape where natural places have all but disappeared. This dissertation examines the intersection between the perceptions that individuals living in the South Florida region have with respect to the natural environment and local ecological problems with where their relationship to nature takes place. ^ The research is based upon both quantitative and qualitative data. The principal methodology used in this research is the ethnographic method, which employed the data gathering techniques of in-depth interviewing and participant observation. The objective of the qualitative portion of the study was to determine how people perceive and relate to their immediate environment. The quantitative portion of the study employed telephone survey data from the FIU/Florida Poll 2000. Data collected through this survey provided the basis to statistically test responses to the research questions. ^ The findings show that people in South Florida have a general idea of the relationship between the human population and the environment but very little knowledge of how they individually affect each other. The experience of private places and public spaces in everyday life permits people to compartmentalize cultural values and understandings of the natural world in separate cognitive schemas. The appreciation of the natural world has almost no connection to their personal sense of obligation to preserve the environment. That obligation is only felt in their home space even though the South Florida environment overall struggles desperately with water shortages, land encroachment, and a rapidly expanding human population whose activities continuously aggravate an already delicate natural balance. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced Placement is a series of courses and tests designed to determine mastery over introductory college material. It has become part of the American educational system. The changing conception of AP was examined using critical theory to determine what led to a view of continual success. The study utilized David Armstrong's variation of Michel Foucault's critical theory to construct an analytical framework. Black and Ubbes' data gathering techniques and Braun and Clark's data analysis were utilized as the analytical framework. Data included 1135 documents: 641 journal articles, 421 newspaper articles and 82 government documents. ^ The study revealed three historical ruptures correlated to three themes containing subthemes. The first rupture was the Sputnik launch in 1958. Its correlated theme was AP leading to school reform with subthemes of AP as reform for able students and AP's gaining of acceptance from secondary schools and higher education. The second rupture was the Nation at Risk report published in 1983. Its correlated theme was AP's shift in emphasis from the exam to the course with the subthemes of AP as a course, a shift in AP's target population, using AP courses to promote equity, and AP courses modifying curricula. The passage of the No Child Left Behind Act of 2001 was the third rupture. Its correlated theme was AP as a means to narrow the achievement gap with the subthemes of AP as a college preparatory program and the shifting of AP to an open access program. ^ The themes revealed a perception that progressively integrated the program into American education. The AP program changed emphasis from tests to curriculum, and is seen as the nation's premier academic program to promote reform and prepare students for college. It has become a major source of income for the College Board. In effect, AP has become an agent of privatization, spurring other private entities into competition for government funding. The change and growth of the program over the past 57 years resulted in a deep integration into American education. As such the program remains an intrinsic part of the system and continues to evolve within American education. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many systems and applications are continuously producing events. These events are used to record the status of the system and trace the behaviors of the systems. By examining these events, system administrators can check the potential problems of these systems. If the temporal dynamics of the systems are further investigated, the underlying patterns can be discovered. The uncovered knowledge can be leveraged to predict the future system behaviors or to mitigate the potential risks of the systems. Moreover, the system administrators can utilize the temporal patterns to set up event management rules to make the system more intelligent. With the popularity of data mining techniques in recent years, these events grad- ually become more and more useful. Despite the recent advances of the data mining techniques, the application to system event mining is still in a rudimentary stage. Most of works are still focusing on episodes mining or frequent pattern discovering. These methods are unable to provide a brief yet comprehensible summary to reveal the valuable information from the high level perspective. Moreover, these methods provide little actionable knowledge to help the system administrators to better man- age the systems. To better make use of the recorded events, more practical techniques are required. From the perspective of data mining, three correlated directions are considered to be helpful for system management: (1) Provide concise yet comprehensive summaries about the running status of the systems; (2) Make the systems more intelligence and autonomous; (3) Effectively detect the abnormal behaviors of the systems. Due to the richness of the event logs, all these directions can be solved in the data-driven manner. And in this way, the robustness of the systems can be enhanced and the goal of autonomous management can be approached. This dissertation mainly focuses on the foregoing directions that leverage tem- poral mining techniques to facilitate system management. More specifically, three concrete topics will be discussed, including event, resource demand prediction, and streaming anomaly detection. Besides the theoretic contributions, the experimental evaluation will also be presented to demonstrate the effectiveness and efficacy of the corresponding solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced Placement is a series of courses and tests designed to determine mastery over introductory college material. It has become part of the American educational system. The changing conception of AP was examined using critical theory to determine what led to a view of continual success. The study utilized David Armstrong’s variation of Michel Foucault’s critical theory to construct an analytical framework. Black and Ubbes’ data gathering techniques and Braun and Clark’s data analysis were utilized as the analytical framework. Data included 1135 documents: 641 journal articles, 421 newspaper articles and 82 government documents. The study revealed three historical ruptures correlated to three themes containing subthemes. The first rupture was the Sputnik launch in 1958. Its correlated theme was AP leading to school reform with subthemes of AP as reform for able students and AP’s gaining of acceptance from secondary schools and higher education. The second rupture was the Nation at Risk report published in 1983. Its correlated theme was AP’s shift in emphasis from the exam to the course with the subthemes of AP as a course, a shift in AP’s target population, using AP courses to promote equity, and AP courses modifying curricula. The passage of the No Child Left Behind Act of 2001 was the third rupture. Its correlated theme was AP as a means to narrow the achievement gap with the subthemes of AP as a college preparatory program and the shifting of AP to an open access program. The themes revealed a perception that progressively integrated the program into American education. The AP program changed emphasis from tests to curriculum, and is seen as the nation’s premier academic program to promote reform and prepare students for college. It has become a major source of income for the College Board. In effect, AP has become an agent of privatization, spurring other private entities into competition for government funding. The change and growth of the program over the past 57 years resulted in a deep integration into American education. As such the program remains an intrinsic part of the system and continues to evolve within American education.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the explosive growth of the volume and complexity of document data (e.g., news, blogs, web pages), it has become a necessity to semantically understand documents and deliver meaningful information to users. Areas dealing with these problems are crossing data mining, information retrieval, and machine learning. For example, document clustering and summarization are two fundamental techniques for understanding document data and have attracted much attention in recent years. Given a collection of documents, document clustering aims to partition them into different groups to provide efficient document browsing and navigation mechanisms. One unrevealed area in document clustering is that how to generate meaningful interpretation for the each document cluster resulted from the clustering process. Document summarization is another effective technique for document understanding, which generates a summary by selecting sentences that deliver the major or topic-relevant information in the original documents. How to improve the automatic summarization performance and apply it to newly emerging problems are two valuable research directions. To assist people to capture the semantics of documents effectively and efficiently, the dissertation focuses on developing effective data mining and machine learning algorithms and systems for (1) integrating document clustering and summarization to obtain meaningful document clusters with summarized interpretation, (2) improving document summarization performance and building document understanding systems to solve real-world applications, and (3) summarizing the differences and evolution of multiple document sources.