2 resultados para osmolality
em Digital Commons at Florida International University
Resumo:
The primary purpose of this study was to investigate agreement among five equations by which clinicians estimate water requirements (EWR) and to determine how well these equations predict total water intake (TWI). The Institute of Medicine has used TWI as a measure of water requirements. A secondary goal of this study was to develop practical equations to predict TWI. These equations could then be considered accurate predictors of an individual’s water requirement. ^ Regressions were performed to determine agreement between the five equations and between the five equations and TWI using NHANES 1999–2004. The criteria for agreement was (1) strong correlation coefficients between all comparisons and (2) regression line that was not significantly different when compared to the line of equality (x=y) i.e., the 95% CI of the slope and intercept must include one and zero, respectively. Correlations were performed to determine association between fat-free mass (FFM) and TWI. Clinically significant variables were selected to build equations for predicting TWI. All analyses were performed with SAS software and were weighted to account for the complex survey design and for oversampling. ^ Results showed that the five EWR equations were strongly correlated but did not agree with each other. Further, the EWR equations were all weakly associated to TWI and lacked agreement with TWI. The strongest agreement between the NRC equation and TWI explained only 8.1% of the variability of TWI. Fat-free mass was positively correlated to TWI. Two models were created to predict TWI. Both models included the variables, race/ethnicity, kcals, age, and height, but one model also included FFM and gender. The other model included BMI and osmolality. Neither model accounted for more than 28% of the variability of TWI. These results provide evidence that estimates of water requirements would vary depending upon which EWR equation was selected by the clinician. None of the existing EWR equations predicted TWI, nor could a prediction equation be created which explained a satisfactory amount of variance in TWI. A good estimate of water requirements may not be predicted by TWI. Future research should focus on using more valid measures to predict water requirements.^
Resumo:
The purpose of this work is to increase ecological understanding of Avicennia germinans L. and Laguncularia racemosa (L.) Gaertn. F. growing in hypersaline habitats with a seasonal climate. The area has a dry season (DS) with low temperature and vapour pressure deficit (vpd), and a wet season (WS) with high temperature and slightly higher vpd. Seasonal patterns in interstitial soil water salinity suggested a lack of tidal flushing in this area to remove salt along the soil profile. The soil solution sodium/potassium (Na+/K+) ratio differed slightly along the soil profile during the DS, but during the WS it was significantly higher at the soil surface. Diurnal changes in xylem osmolality between predawn (higher) and midday (lower) were observed in both species. However, A. germinans had higher xylem osmolality compared to L. racemosa. Xylem Na+/K+ suggested higher selectivity of K+ over Na+ in both species and seasons. The water relations parameters derived from pressure–volume P–V curves were relatively stable between seasons for each species. The range of water potentials (Ψ), measured in the field, was within estimated values for turgor maintenance from P–V curves. Thus the leaves of both species were osmotically adapted to maintain continued water uptake in this hypersaline mangrove environment.