9 resultados para organic production

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterotrophic bacteria are important decomposers and transformers of primary production and provide an important link between detritus and the aquatic food web. In seagrass ecosystems, much of seagrass primary production is unavailable through direct grazing and must undergo microbial reworking before seagrass production can enter the aquatic food web. The goal of my dissertation research is to understand better the role heterotrophic bacteria play in carbon cycling in seagrass estuaries. My dissertation research focuses on Florida Bay, a seagrass estuary that has experienced recent changes in carbon source availability, which may have altered ecosystem function. My dissertation research investigates the importance of seagrass, algal and/or cyanobacterial, and allochthonous-derived organic matter to heterotrophic bacteria in Florida Bay and helps establish the carbon base of the estuarine food web. ^ A three tiered approach to the study of heterotrophic bacterial carbon cycling and trophic influences in Florida Bay was used: (1) Spatiotemporal observations of environmental parameters (hydrology, nutrients, extracellular enzymes, and microbial abundance, biomass, and production); (2) Microbial grazing experiments under different levels of top-down and bottom-up influence; and (3) Bulk and compound-specific (bacteria-biomarker fatty acid analysis) stable carbon isotope analysis. ^ In Florida Bay, spatiotemporal patterns in microbial extracellular enzyme (also called ectoenzyme) activities indicate that microorganisms hydrolyzed selectively fractions of the estuarine organic matter pool. The microbial community hydrolyzed organic acids, peptides, and phosphate esters and did not use storage and structural carbohydrates. Organic matter use by heterotrophic bacterioplankton in Florida Bay was co-regulated by bottom-up (resource availability) and top-down (grazer mediated) processes. A bacterial carbon budget based on bacterial, epiphytic, and seagrass production indicates that heterotrophic bacterial carbon cycles are supported primarily through epiphytic production with mixing from seagrass production. Stable carbon isotope analysis of bacteria biomarkers and carbon sources in Florida Bay corroborate the results of the bacterial carbon budget. These results support previous studies of aquatic consumers in Florida Bay, indicating that epiphytic/benthic algal and/or cyanobacterial production with mixing from seagrass-derived organic matter is the carbon base of the seagrass estuarine food web. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The clear, shallow, oligotrophic waters of Florida Bay are characterized by low phytoplankton biomass, yet periodic cyanobacteria and diatom blooms do occur. We hypothesized that allochthonous dissolved organic matter (DOM) was providing a subsidy to the system in the form of bound nutrients. Water from four bay sites was incubated under natural light and dark conditions with enrichments of either DOM ( > 1 kD, 2×DOM) or inorganic nutrients (N+P). Samples were analyzed for bacterial numbers, bacterial production, phytoplankton biomass, phytoplankton community structure, and production, nutrients, and alkaline phosphatase (AP) activity. The influence of 2×DOM enrichment on phytoplankton biomass developed slowly during the incubations and was relatively small compared to nutrient additions. Inorganic nutrient additions resulted in an ephemeral bloom characterized initially as cyanobacterial and brown algae but which changed to dinoflagellate and/or brown algae by day six. The DIN:TP ratio decreased 10-fold in the N+P treatments as the system progressed towards N limitation. This ratio did not change significantly for 2×DOM treatments. In addition, these experiments indicated that both autotrophic and heterotrophic microbial populations in Florida Bay may fluctuate in their limitation by organic and inorganic nutrient availability. Both N+P and 2×DOM enrichments revealed significant and positive response in bioavailability of dissolved organic carbon (BDOC). Potential BDOC ranged from 1.1 to 35.5%, with the most labile forms occurring in Whipray Basin. BDOC at all sites was stimulated by the 2×DOM addition. Except for Duck Key, BDOC at all sites was also stimulated by the addition of N+P. BDOC was lower in the dry season than in the wet season (5.56% vs. 16.86%). This may be explained by the distinct chemical characteristics of the DOM produced at different times of year. Thus, both the heterotrophic and autotrophic microbial communities in Florida Bay are modulated by bioavailability of DOM. This has ramifications for the fate of DOM from the Everglades inputs, implicating DOM bioavailability as a contributing factor in regulating the onset, persistence, and composition of phytoplankton blooms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ∼218 ± 72 Tg C a−1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ∼112 ± 85 Tg C a−1, equivalent in magnitude to ∼30–40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the molecular composition of dissolved organic matter (DOM), collected from wetlands of the Southern Everglades, was examined using a variety of analytical techniques in order to characterize its sources and transformation in the environment. The methods applied for the characterization of DOM included fluorescence spectroscopy, solid state 13C CPMAS NMR spectroscopy, and pyrolysis-GC/MS. The relative abundance of protein-like components and carbohydrates increased from the canal site to more remote freshwater marsh sites suggesting that significant amounts of non-humic DOM are autochthonously produced within the freshwater marshes, and are not exclusively introduced through canal inputs. Such in situ DOM production is important when considering how DOM from canals is processed and transported to downstream estuaries of Florida Bay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence properties of whole water samples and molecular characteristics of ultrafiltrated dissolved organic matter (UDOM > 1,000 D) such as lignin phenol and neutral sugar compositions and 13C nuclear magnetic resonance (NMR) spectra were determined along a freshwater to marine gradient in Everglades National Park. Furthermore, UDOM samples were categorized by hierarchical cluster analysis based on their pyrolysis gas chromatography/mass spectrometry products. Fluorescence properties suggest that autochthonous DOM leached/exuded from biomass is quantitatively important in this system. 13C NMR spectra showed that UDOM from the oligotrophic Taylor Slough (TS) and Florida Bay (FB) ecosystems has low aromatic C (13% ± 3% for TS; 2% ± 2% for FB) and very high O-alkyl C (54% ± 4% for TS; 75% ± 4% for FB) concentrations. High O-alkyl C concentrations in FB suggest seagrass/phytoplankton communities as dominant sources of UDOM. The amount of neutral sugars was not appreciably different between the TS and FB sites (115 ± 12 mg C g C-1 UDOM) but their concentrations suggest a low level of diagenesis and high production rates of this material in this oligotrophic environment. Total yield of lignin phenols (vanillyl + syringyl phenols) in TS was low (0.20–0.39 mg 100 mg C-1 UDOM) compared with other riverine environments and even lower in FB (0.04–0.07 mg 100 mg C-1 UDOM) and could be a result of photodegradation and/or dilution by other utochthonous DOM. The high O-alkyl and low aromatic nature of this UDOM suggests significant biogenic inputs (as compared with soils) and limited bioavailability in this ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short-term (daily) and seasonal variations in concentration and flux of dissolved organic carbon (DOC) were examined over 15 tidal cycles in a riverine mangrove wetland along Shark River, Florida in 2003. Due to the influence of seasonal rainfall and wind patterns on Shark River’s hydrology, samplings were made to include wet, dry and transitional (Norte) seasons. We used a flume extending from a tidal creek to a basin forest to measure vertical (vegetated soil/water column) and horizontal (mangrove forest/tidal creek) flux of DOC. We found significant (p < 0.05) variations in surface water temperature, salinity, conductivity, pH and mean concentration of DOC with season. Water temperature and salinity followed seasonal patterns of air temperature and rainfall, while mean DOC concentration was highest during the dry season (May), followed by the wet (October) and ‘Norte’ (December) seasons. This pattern of DOC concentration may be due to a combination of litter production and inundation pattern of the wetland. In contrast to daily (between tides) variation in DOC flux between the mangrove forest and tidal creek, daily variations of mean water quality were not significant. However, within-tide variation of DOC flux, dissolved oxygen content and salinity was observed. This indicated that the length of inundation and water source (freshwater vs. saltwater) variation across tidal cycles influenced water quality and DOC flux in the water column. Net DOC export was measured in October and December, suggesting the mangrove forest was a source of DOC to the adjacent tidal creek during these periods. Net annual export of DOC from the fringe mangrove to both the tidal creek and basin mangrove forest was 56 g C m−2 year−1. The seasonal pattern in our flux results indicates that DOC flux from this mangrove forest may be governed by both freshwater discharge and tidal range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural dissolved organic matter (DOM) is the major absorber of sunlight in most natural waters and a critical component of carbon cycling in aquatic systems. The combined effect of light absorbance properties and related photo-production of reactive species are essential in determining the reactivity of DOM. Optical properties and in particular excitation–emission matrix fluorescence spectroscopy combined with parallel factor analysis (EEM-PARAFAC) have been used increasingly to track sources and fate of DOM. Here we describe studies conducted in water from two estuarine systems in the Florida Everglades, with a salinity gradient of 2 to 37 and dissolved organic carbon concentrations from 19.3 to 5.74 mg C L−1, aimed at assessing how the quantity and quality of DOM is coupled to the formation rates and steady-state concentrations of reactive species including singlet oxygen, hydroxyl radical, and the triplet excited state of DOM. These species were related to optical properties and PARAFAC components of the DOM. The formation rate and steady-state concentration of the carbonate radical was calculated in all samples. The data suggests that formation rates, particularly for singlet oxygen and hydroxyl radicals, are strongly coupled to the abundance of terrestrial humic-like substances. A decrease in singlet oxygen, hydroxyl radical, and carbonate radical formation rates and steady-state concentration along the estuarine salinity gradient was observed as the relative concentration of terrestrial humic-like DOM decreased due to mixing with microbial humic-like and protein-like DOM components, while the formation rate of triplet excited-state DOM did not change. Fluorescent DOM was also found to be more tightly coupled to reactive species generation than chromophoric DOM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research was to determine what challenges small-scale organic farmers face in choosing their particular production, marketing, and organizational strategies in Miami-Dade County. Rapid soil assessments were used on six organic farms to determine the effects of soil nutrient management in terms of pH, soil organic matter (SOM), and phosphorus (P). Potential costs of inputs were documented for each farm to determine the largest challenges facing the profitability of organic farms. A production, marketing, and organizational analysis determined how farmers shape their inter-farm competitive and cooperative relations. Preliminary findings from soil, input, labor, marketing, and organizational factors indicate that soil health varies dramatically from farm to farm, inputs and labor constitute significant costs, and marketing, production, and organizational strategies show no signs of immediate growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research is to study the commercialization of Fairtrade and Organic coffee in the Bolivia. Fairtrade and Organic coffee are alternative trade systems designed to promote the equitable and environmentally sustainable production of coffee. However, these alternative trading systems often fail to meet these goals. The producers and environment these systems are intended to protect remain marginalized. These failures are due to a number of local institutions. In order to better understand these institutions, this research conducted interviews of various stakeholders including producers, cooperative leaders, organic/Fair Trade certifiers, government agencies and private buyers. All these stakeholders influence the success of the alternative trade systems. By better understanding how these stakeholders impact the commercialization of coffee in Bolivia; new policies can be develop to improve the outcomes of alternative trade, to benefit both producers and the environment. This is especially critical in Bolivia because of the environmentally sensitive area in which coffee is grown, the potentially damaging impact of coca on the region and, the devastating economic impact to farmers.