1 resultado para optimal estimating equations

em Digital Commons at Florida International University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The primary purpose of this study was to investigate agreement among five equations by which clinicians estimate water requirements (EWR) and to determine how well these equations predict total water intake (TWI). The Institute of Medicine has used TWI as a measure of water requirements. A secondary goal of this study was to develop practical equations to predict TWI. These equations could then be considered accurate predictors of an individual’s water requirement. ^ Regressions were performed to determine agreement between the five equations and between the five equations and TWI using NHANES 1999–2004. The criteria for agreement was (1) strong correlation coefficients between all comparisons and (2) regression line that was not significantly different when compared to the line of equality (x=y) i.e., the 95% CI of the slope and intercept must include one and zero, respectively. Correlations were performed to determine association between fat-free mass (FFM) and TWI. Clinically significant variables were selected to build equations for predicting TWI. All analyses were performed with SAS software and were weighted to account for the complex survey design and for oversampling. ^ Results showed that the five EWR equations were strongly correlated but did not agree with each other. Further, the EWR equations were all weakly associated to TWI and lacked agreement with TWI. The strongest agreement between the NRC equation and TWI explained only 8.1% of the variability of TWI. Fat-free mass was positively correlated to TWI. Two models were created to predict TWI. Both models included the variables, race/ethnicity, kcals, age, and height, but one model also included FFM and gender. The other model included BMI and osmolality. Neither model accounted for more than 28% of the variability of TWI. These results provide evidence that estimates of water requirements would vary depending upon which EWR equation was selected by the clinician. None of the existing EWR equations predicted TWI, nor could a prediction equation be created which explained a satisfactory amount of variance in TWI. A good estimate of water requirements may not be predicted by TWI. Future research should focus on using more valid measures to predict water requirements.^