4 resultados para non-Gaussian volatility sequences
em Digital Commons at Florida International University
Resumo:
Humoral and cells surface molecules of the mammalian immune system, grouped into the Immunoglobulin Gene Superfamily, share protein structure and gene sequence homologies with molecules found among diverse phylogenetic groups. In histocompatibility studies, the gorgonian coral Swiftia exserta has recently demonstrated specific alloimmunity with memory (Salter-Cid and Bigger, 1991. Biological Bulletin Vol 181). In an attempt to shed light on the origins of this gene family and the evolution of the vertebrate immune response, genomic DNA from Swiftia exserta was isolated, purified, and analyzed by Southern blot hybridization with mouse gene probes corresponding to two molecules of the Immunoglobulin Gene Superfamily, the Thy-1 antigen, and the alpha-3 domain of the MHC Class I histocompatibility marker. Hybridizations were conducted under low to non-stringent conditions to allow binding of mismatched homologs that may exist between the mouse gene probes and the Swiftia DNA. Removal of non-specific binding (sequences less than 70% homologous) occurred in washing steps. Results show that with the probes selected, the method chosen, and the conditions applied, no evidence of sequences of 70% or greater homology to the mouse Thy-1 or MHC Class I alpha-3 genes exist in Swiftia exserta genome.
Resumo:
This paper for the first time discusses a computational study of using magneto-electric (ME) nanoparticles to artificially stimulate the neural activity deep in the brain. The new technology provides a unique way to couple electric signals in the neural network to the magnetic dipoles in the nanoparticles with the purpose to enable a non-invasive approach. Simulations of the effect of ME nanoparticles for non-invasively stimulating the brain of a patient with Parkinson’s Disease to bring the pulsed sequences of the electric field to the levels comparable to those of healthy people show that the optimized values for the concentration of the 20-nm nanoparticles (with the magneto-electric (ME) coefficient of 100 V cm21 Oe21 in the aqueous solution) is 36106 particles/cc, and the frequency of the externally applied 300-Oe magnetic field is 80 Hz.
Resumo:
Bio-systems are inherently complex information processing systems. Furthermore, physiological complexities of biological systems limit the formation of a hypothesis in terms of behavior and the ability to test hypothesis. More importantly the identification and classification of mutation in patients are centric topics in today's cancer research. Next generation sequencing (NGS) technologies can provide genome-wide coverage at a single nucleotide resolution and at reasonable speed and cost. The unprecedented molecular characterization provided by NGS offers the potential for an individualized approach to treatment. These advances in cancer genomics have enabled scientists to interrogate cancer-specific genomic variants and compare them with the normal variants in the same patient. Analysis of this data provides a catalog of somatic variants, present in tumor genome but not in the normal tissue DNA. In this dissertation, we present a new computational framework to the problem of predicting the number of mutations on a chromosome for a certain patient, which is a fundamental problem in clinical and research fields. We begin this dissertation with the development of a framework system that is capable of utilizing published data from a longitudinal study of patients with acute myeloid leukemia (AML), who's DNA from both normal as well as malignant tissues was subjected to NGS analysis at various points in time. By processing the sequencing data at the time of cancer diagnosis using the components of our framework, we tested it by predicting the genomic regions to be mutated at the time of relapse and, later, by comparing our results with the actual regions that showed mutations (discovered at relapse time). We demonstrate that this coupling of the algorithm pipeline can drastically improve the predictive abilities of searching a reliable molecular signature. Arguably, the most important result of our research is its superior performance to other methods like Radial Basis Function Network, Sequential Minimal Optimization, and Gaussian Process. In the final part of this dissertation, we present a detailed significance, stability and statistical analysis of our model. A performance comparison of the results are presented. This work clearly lays a good foundation for future research for other types of cancer.^
Resumo:
Alternating (CG) sequences form an unusual conformation in the presence of cobalt hexamine. The oligomer, BZ-IV, containing a (CG)4 run (BZ-IV sequence: 5'TCGACGCGCGCGATCAGTCA- 3') was inserted at the Sal I site of the Escherichia coli pGEM-5zf(+) plasmid producing the plasmid pCW001. Hinf I digestion of pCW001 produced a 367 base pair (bp) fragment containing the BZ-IV insert. For controls, the 452 bp Hinf I fragment from the pCW001 plasmid and the 347 bp Hinf I fragment from the pGEM plasmid were used. Digestion studies were performed using the restriction enzymes Bgl I, EcoRV, Hha I, Mbo I, Not I, Pst I, and Taq I and methylation studies were performed using dam methylase. Data were obtained by beta scanning or ethidium bromide staining the polyacrylamide gels of the digestion or methylation products. The results show that in the presence of 100 uM cobalt hexamine, in which BZ-IV takes on a non-B-Z-structure, the enzyme's ability to react and cleave its recognition site is enhanced.