4 resultados para neutrophil elastase

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antibiotic resistance, production of alginate and virulence factors, and altered host immune responses are the hallmarks of chronic Pseudomonas aeruginosa infection. Failure of antibiotic therapy has been attributed to the emergence of P. aeruginosa strains that produce β-lactamase constitutively. In Enterobacteriaceae, β-lactamase induction involves four genes with known functions: ampC, ampR, ampD, and ampG, encoding the enzyme, transcriptional regulator, amidase and permease, respectively. In addition to all these amp genes, P. aeruginosa possesses two ampG paralogs, designated ampG and ampP. In this study, P. aeruginosa ampC, ampR, ampG and ampP were analyzed. Inactivation of ampC in the prototypic PAO1 failed to abolish the β-lactamase activity leading to the discovery of P. aeruginosa oxacillinase PoxB. Cloning and expression of poxB in Escherichia coli confers β-lactam resistance. Both AmpC and PoxB contribute to P. aeruginosa resistance against a wide spectrum of β-lactam antibiotics. The expression of PoxB and AmpC is regulated by a LysR-type transcriptional regulator AmpR that up-regulates AmpC but down-regulates PoxB activities. Analyses of P. aeruginosa ampR mutant demonstrate that AmpR is a global regulator that modulates the expressions of Las and Rhl quorum sensing (QS) systems, and the production of pyocyanin, LasA protease and LasB elastase. Introduction of the ampR mutation into an alginate-producing strain reveals the presence of a complex co-regulatory network between antibiotic resistance, QS alginate and other virulence factor production. Using phoA and lacZ protein fusion analyses, AmpR, AmpG and AmpP were localized to the inner membrane with one, 16 and 10 transmembrane helices, respectively. AmpR has a cytoplasmic DNA-binding and a periplasmic substrate binding domains. AmpG and AmpP are essential for the maximal expression of β-lactamase. Analysis of the murein breakdown products suggests that AmpG exports UDP-N-acetylmuramyl-L-alanine-γ-D-glutamate-meso-diaminopimelic acid-D-alanine-D-alanine (UDP-MurNAc-pentapeptide), the corepressor of AmpR, whereas AmpP imports N-acetylglucosaminyl-beta-1,4-anhydro-N-acetylmuramic acid-Ala-γ-D-Glu-meso-diaminopimelic acid (GlcNAc-anhMurNAc-tripeptide) and GlcNAc-anhMurNAc-pentapeptide, the co-inducers of AmpR. This study reveals a complex interaction between the Amp proteins and murein breakdown products involved in P. aeruginosa β-lactamase induction. In summary, this dissertation takes us a little closer to understanding the P. aeruginosa complex co-regulatory mechanism in the development of β-lactam resistance and establishment of chronic infection. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antibiotic resistance has emerged as a severe problem in hospital-acquired infectious disease. The Gram-negative bacterium Pseudomonas aeruginosa is found to cause secondary infection in immune-compromised patients. Unfortunately, it is resistant to virtually all β-lactam antibiotics such as penicillin, cephalosporin and others. Researchers are seeking for new compounds to treat several antibiotic-resistant bacterial strains. Artemisia plant extracts are commonly used for their therapeutic properties by natives throughout dry regions of North and South America. Here, they are administered as an alternative medicine for stomach problems and other complex health issues. In this study, the antimicrobial effects of plant extracts from several Artemisia species as well as compounds dehydroleucodine and dehydroparishin-B (sesquiterpenes derived specifically from A. douglasiana) were used as treatments against the pathogenicity effects of P. aeruginosa. Results showed that both compounds effectively inhibit the secretion of LasB elastase, biofilm formation and type III secretion, but fail to control LasA protease. This is a significant observation because these virulent factors are crucial in establishing P.aeruginosa infection. The results from this study signify a plausible role for future alternative therapy in the biomedical field, which recommends DhL and DhP can be studied as key compounds against bacterial infections of Pseudomonas aeruginosa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest in the health of marine mammals has increased due, in part, to the attention given to human impact on the marine environment. Recent mass strandings of the Atlantic bottlenose dolphin (Tursiops truncatus) and rising mortalities of the endangered Florida manatee (Trichechus manatus latirostris) have raised questions on the extent to which pollution, infectious disease, "stress," and captivity influence the immune system of these animals. This study has provided the first in-depth characterization of immunocytes in the peripheral blood of dolphins (n = 190) and manatees (n = 56). Immunocyte morphology and baseline values were determined in clinically normal animals under free-ranging, stranded and captive living conditions as well as by age and sex. Additionally, immunocyte population dynamics were characterized in sick animals. This was accomplished with traditional cytochemical techniques and new lymphocyte phenotyping methodology which was validated in this study. Traditional cytochemical techniques demonstrated that blood immunocyte morphology and cell numbers are similar to terrestrial mammals with some notable exceptions. The manatee heterophilic granulocyte is a morphologically unique cell and probably functions similarly to the typical mammalian neutrophil. Eosinophils were rarely found in manatees but were uncommonly high in healthy and sick dolphins. Basophils were not identified. Manatees had higher total lymphocyte numbers compared to dolphins and most terrestrial mammals. Lymphocyte subsets identified in healthy animals included T$\rm\sb{h}$, T$\rm\sb{c/s}$, B and NK cells. Dolphin and manatee T and B cell values were higher than those reported in man and most terrestrial mammals. The manatee has extraordinarily high absolute numbers of circulating T$\rm\sb{h}$ cells which suggests an enhanced immunological response capability. With few exceptions, immunocyte types and absolute numbers were not significantly different between free-ranging, stranded and captive categories or between sex and age categories. The evaluation of immunocyte dynamics in various disease states demonstrated a wide variation in cellular responses which provided new insights into innate, humoral and cell-mediated immunity in these species. Additionally, this study demonstrated that lymphocyte phenotyping has diagnostic significance and could be developed into a potential indicator of immunocompetence in both free-ranging and captive dolphin and manatee populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest in the health of marine mammals has increased due, in part, to the attention given to human impact on the marine environment. Recent mass strandings of the Atlantic bottlenose dolphin (Tursiops truncatus) and rising mortalities of the endangered Florida manatee (Trichechus manatus latirostris) have raised questions on the extent to which pollution, infectious disease, "stress," and captivity influence the immune system of these animals. This study has provided the first in-depth characterization of immunocytes in the peripheral blood of dolphins (n=180) and manatees (n=56). Immunocyte morphology and baseline values were determined in clinically normal animals under free-ranging, stranded and captive living conditions as well as by age and sex. Additionally, immuocyte population dynamics were characterized in sick animals. This was accomplished with traditional cytochemical techniques and new lymphocyte phenotyping methodology which was validated in this study. Traditional cytochemical techniques demonstrated that blood immunocyte morphology and cell numbers are similar to terrestrial mammals with some notable exceptions. The manatee heterophilic granulocyte is a morphologically unique cell and probably functions similarly to the typical mammalian neutrophil. Eosinophils were rarely found in manatees but were uncommonly high in healthy and sick dolphins. Basophils were not identified. Manatees had higher total lymphocyte numbers compared to dolphins and most terrestrial mammals. Lymphocyte subsets identified in healthy animals included Th, Tes, B and NK cells. Dolphin and manatee T and B cell values were higher than those reported in man and most terrestrial mammals. The manatee has extraordinarily high absolute numbers of circulating Th cells which suggests an enhanced immunological response capability. With few exceptions, immunocyte types and absolute numbers were not significantly different between free-ranging, stranded and captive categories or between sex and age categories. The evaluation of immunocyte dynamics in various disease states demonstrated a wide variation in cellular responses which provided new insights into innate, humoral and cell-mediated immunity in these species. Additionally, this study demonstrated that lymphocyte phenotyping has diagnostic significance and could be developed into a potential indicator of immunocompetence in both free-ranging and captive dolphin and manatee populations.