7 resultados para neural systems

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Security remains a top priority for organizations as their information systems continue to be plagued by security breaches. This dissertation developed a unique approach to assess the security risks associated with information systems based on dynamic neural network architecture. The risks that are considered encompass the production computing environment and the client machine environment. The risks are established as metrics that define how susceptible each of the computing environments is to security breaches. ^ The merit of the approach developed in this dissertation is based on the design and implementation of Artificial Neural Networks to assess the risks in the computing and client machine environments. The datasets that were utilized in the implementation and validation of the model were obtained from business organizations using a web survey tool hosted by Microsoft. This site was designed as a host site for anonymous surveys that were devised specifically as part of this dissertation. Microsoft customers can login to the website and submit their responses to the questionnaire. ^ This work asserted that security in information systems is not dependent exclusively on technology but rather on the triumvirate people, process and technology. The questionnaire and consequently the developed neural network architecture accounted for all three key factors that impact information systems security. ^ As part of the study, a methodology on how to develop, train and validate such a predictive model was devised and successfully deployed. This methodology prescribed how to determine the optimal topology, activation function, and associated parameters for this security based scenario. The assessment of the effects of security breaches to the information systems has traditionally been post-mortem whereas this dissertation provided a predictive solution where organizations can determine how susceptible their environments are to security breaches in a proactive way. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our nation’s highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. ^ This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems. In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of hematopoietic stem/progenitor cells to determine whether the deletion of Tet2 can affect the abundance of 5hmC at myeloid, T-cell and B-cell specific gene transcription start sites, which ultimately result in various hematological malignancies. Subsequent Exome sequencing (Exome-Seq) showed that disease-specific genes are mutated in different types of tumors, which suggests that TET2 may protect the genome from being mutated. The direct interaction between TET2 and Mutator S Homolog 6 (MSH6) protein suggests TET2 is involved in DNA mismatch repair. Finally, in vivo mismatch repair studies show that the loss of Tet2 causes a mutator phenotype. Taken together, my data indicate that TET2 binds to MSH6 to protect genome integrity. In Part II, I intended to better understand the role of Tet2 in the nervous system. 5-hydroxymethylcytosine regulates epigenetic modification during neurodevelopment and aging. Thus, Tet2 may play a critical role in regulating adult neurogenesis. To examine the physiological significance of Tet2 in the nervous system, I first showed that the deletion of Tet2 reduces the 5hmC levels in neural stem cells. Mice lacking Tet2 show abnormal hippocampal neurogenesis along with 5hmC alternations at different gene promoters and corresponding gene expression downregulation. Through the luciferase reporter assay, two neural factors Neurogenic differentiation 1 (NeuroD1) and Glial fibrillary acidic protein (Gfap) were down-regulated in Tet2 knockout cells. My results suggest that Tet2 regulates neural stem/progenitor cell proliferation and differentiation in adult brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our national highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I proposed the study of two distinct aspects of Ten-Eleven Translocation 2 (TET2) protein for understanding specific functions in different body systems. ^ In Part I, I characterized the molecular mechanisms of Tet2 in the hematological system. As the second member of Ten-Eleven Translocation protein family, TET2 is frequently mutated in leukemic patients. Previous studies have shown that the TET2 mutations frequently occur in 20% myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN), 10% T-cell lymphoma leukemia and 2% B-cell lymphoma leukemia. Genetic mouse models also display distinct phenotypes of various types of hematological malignancies. I performed 5-hydroxymethylcytosine (5hmC) chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) of hematopoietic stem/progenitor cells to determine whether the deletion of Tet2 can affect the abundance of 5hmC at myeloid, T-cell and B-cell specific gene transcription start sites, which ultimately result in various hematological malignancies. Subsequent Exome sequencing (Exome-Seq) showed that disease-specific genes are mutated in different types of tumors, which suggests that TET2 may protect the genome from being mutated. The direct interaction between TET2 and Mutator S Homolog 6 (MSH6) protein suggests TET2 is involved in DNA mismatch repair. Finally, in vivo mismatch repair studies show that the loss of Tet2 causes a mutator phenotype. Taken together, my data indicate that TET2 binds to MSH6 to protect genome integrity. ^ In Part II, I intended to better understand the role of Tet2 in the nervous system. 5-hydroxymethylcytosine regulates epigenetic modification during neurodevelopment and aging. Thus, Tet2 may play a critical role in regulating adult neurogenesis. To examine the physiological significance of Tet2 in the nervous system, I first showed that the deletion of Tet2 reduces the 5hmC levels in neural stem cells. Mice lacking Tet2 show abnormal hippocampal neurogenesis along with 5hmC alternations at different gene promoters and corresponding gene expression downregulation. Through the luciferase reporter assay, two neural factors Neurogenic differentiation 1 (NeuroD1) and Glial fibrillary acidic protein (Gfap) were down-regulated in Tet2 knockout cells. My results suggest that Tet2 regulates neural stem/progenitor cell proliferation and differentiation in adult brain.^