21 resultados para network traffic

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the growing commercial importance of the Internet and the development of new real-time, connection-oriented services like IP-telephony and electronic commerce resilience is becoming a key issue in the design of TP-based networks. Two emerging technologies, which can accomplish the task of efficient information transfer, are Multiprotocol Label Switching (MPLS) and Differentiated Services. A main benefit of MPLS is the ability to introduce traffic-engineering concepts due to its connection-oriented characteristic. With MPLS it is possible to assign different paths for packets through the network. Differentiated services divides traffic into different classes and treat them differently, especially when there is a shortage of network resources. In this thesis, a framework was proposed to integrate the above two technologies and its performance in providing load balancing and improving QoS was evaluated. Simulation and analysis of this framework demonstrated that the combination of MPLS and Differentiated services is a powerful tool for QoS provisioning in IP networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Network simulation is an indispensable tool for studying Internet-scale networks due to the heterogeneous structure, immense size and changing properties. It is crucial for network simulators to generate representative traffic, which is necessary for effectively evaluating next-generation network protocols and applications. With network simulation, we can make a distinction between foreground traffic, which is generated by the target applications the researchers intend to study and therefore must be simulated with high fidelity, and background traffic, which represents the network traffic that is generated by other applications and does not require significant accuracy. The background traffic has a significant impact on the foreground traffic, since it competes with the foreground traffic for network resources and therefore can drastically affect the behavior of the applications that produce the foreground traffic. This dissertation aims to provide a solution to meaningfully generate background traffic in three aspects. First is realism. Realistic traffic characterization plays an important role in determining the correct outcome of the simulation studies. This work starts from enhancing an existing fluid background traffic model by removing its two unrealistic assumptions. The improved model can correctly reflect the network conditions in the reverse direction of the data traffic and can reproduce the traffic burstiness observed from measurements. Second is scalability. The trade-off between accuracy and scalability is a constant theme in background traffic modeling. This work presents a fast rate-based TCP (RTCP) traffic model, which originally used analytical models to represent TCP congestion control behavior. This model outperforms other existing traffic models in that it can correctly capture the overall TCP behavior and achieve a speedup of more than two orders of magnitude over the corresponding packet-oriented simulation. Third is network-wide traffic generation. Regardless of how detailed or scalable the models are, they mainly focus on how to generate traffic on one single link, which cannot be extended easily to studies of more complicated network scenarios. This work presents a cluster-based spatio-temporal background traffic generation model that considers spatial and temporal traffic characteristics as well as their correlations. The resulting model can be used effectively for the evaluation work in network studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Network simulation is an indispensable tool for studying Internet-scale networks due to the heterogeneous structure, immense size and changing properties. It is crucial for network simulators to generate representative traffic, which is necessary for effectively evaluating next-generation network protocols and applications. With network simulation, we can make a distinction between foreground traffic, which is generated by the target applications the researchers intend to study and therefore must be simulated with high fidelity, and background traffic, which represents the network traffic that is generated by other applications and does not require significant accuracy. The background traffic has a significant impact on the foreground traffic, since it competes with the foreground traffic for network resources and therefore can drastically affect the behavior of the applications that produce the foreground traffic. This dissertation aims to provide a solution to meaningfully generate background traffic in three aspects. First is realism. Realistic traffic characterization plays an important role in determining the correct outcome of the simulation studies. This work starts from enhancing an existing fluid background traffic model by removing its two unrealistic assumptions. The improved model can correctly reflect the network conditions in the reverse direction of the data traffic and can reproduce the traffic burstiness observed from measurements. Second is scalability. The trade-off between accuracy and scalability is a constant theme in background traffic modeling. This work presents a fast rate-based TCP (RTCP) traffic model, which originally used analytical models to represent TCP congestion control behavior. This model outperforms other existing traffic models in that it can correctly capture the overall TCP behavior and achieve a speedup of more than two orders of magnitude over the corresponding packet-oriented simulation. Third is network-wide traffic generation. Regardless of how detailed or scalable the models are, they mainly focus on how to generate traffic on one single link, which cannot be extended easily to studies of more complicated network scenarios. This work presents a cluster-based spatio-temporal background traffic generation model that considers spatial and temporal traffic characteristics as well as their correlations. The resulting model can be used effectively for the evaluation work in network studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Next generation networks are characterized by ever increasing complexity, intelligence, heterogeneous technologies and increasing user expectations. Telecommunication networks in particular have become truly global, consisting of a variety of national and regional networks, both wired and wireless. Consequently, the management of telecommunication networks is becoming increasingly complex. In addition, network security and reliability requirements require additional overheads which increase the size of the data records. This in turn causes acute network traffic congestions. There is no single network management methodology to control the various requirements of today's networks, and provides a good level of Quality of Service (QoS), and network security. Therefore, an integrated approach is needed in which a combination of methodologies can provide solutions and answers to network events (which cause severe congestions and compromise the quality of service and security). The proposed solution focused on a systematic approach to design a network management system based upon the recent advances in the mobile agent technologies. This solution has provided a new traffic management system for telecommunication networks that is capable of (1) reducing the network traffic load (thus reducing traffic congestion), (2) overcoming existing network latency, (3) adapting dynamically to the traffic load of the system, (4) operating in heterogeneous environments with improved security, and (5) having robust and fault tolerance behavior. This solution has solved several key challenges in the development of network management for telecommunication networks using mobile agents. We have designed several types of agents, whose interactions will allow performing some complex management actions, and integrating them. Our solution is decentralized to eliminate excessive bandwidth usage and at the same time has extended the capabilities of the Simple Network Management Protocol (SNMP). Our solution is fully compatible with the existing standards.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lack of analytical models that can accurately describe large-scale networked systems makes empirical experimentation indispensable for understanding complex behaviors. Research on network testbeds for testing network protocols and distributed services, including physical, emulated, and federated testbeds, has made steady progress. Although the success of these testbeds is undeniable, they fail to provide: 1) scalability, for handling large-scale networks with hundreds or thousands of hosts and routers organized in different scenarios, 2) flexibility, for testing new protocols or applications in diverse settings, and 3) inter-operability, for combining simulated and real network entities in experiments. This dissertation tackles these issues in three different dimensions. First, we present SVEET, a system that enables inter-operability between real and simulated hosts. In order to increase the scalability of networks under study, SVEET enables time-dilated synchronization between real hosts and the discrete-event simulator. Realistic TCP congestion control algorithms are implemented in the simulator to allow seamless interactions between real and simulated hosts. SVEET is validated via extensive experiments and its capabilities are assessed through case studies involving real applications. Second, we present PrimoGENI, a system that allows a distributed discrete-event simulator, running in real-time, to interact with real network entities in a federated environment. PrimoGENI greatly enhances the flexibility of network experiments, through which a great variety of network conditions can be reproduced to examine what-if questions. Furthermore, PrimoGENI performs resource management functions, on behalf of the user, for instantiating network experiments on shared infrastructures. Finally, to further increase the scalability of network testbeds to handle large-scale high-capacity networks, we present a novel symbiotic simulation approach. We present SymbioSim, a testbed for large-scale network experimentation where a high-performance simulation system closely cooperates with an emulation system in a mutually beneficial way. On the one hand, the simulation system benefits from incorporating the traffic metadata from real applications in the emulation system to reproduce the realistic traffic conditions. On the other hand, the emulation system benefits from receiving the continuous updates from the simulation system to calibrate the traffic between real applications. Specific techniques that support the symbiotic approach include: 1) a model downscaling scheme that can significantly reduce the complexity of the large-scale simulation model, resulting in an efficient emulation system for modulating the high-capacity network traffic between real applications; 2) a queuing network model for the downscaled emulation system to accurately represent the network effects of the simulated traffic; and 3) techniques for reducing the synchronization overhead between the simulation and emulation systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lack of analytical models that can accurately describe large-scale networked systems makes empirical experimentation indispensable for understanding complex behaviors. Research on network testbeds for testing network protocols and distributed services, including physical, emulated, and federated testbeds, has made steady progress. Although the success of these testbeds is undeniable, they fail to provide: 1) scalability, for handling large-scale networks with hundreds or thousands of hosts and routers organized in different scenarios, 2) flexibility, for testing new protocols or applications in diverse settings, and 3) inter-operability, for combining simulated and real network entities in experiments. This dissertation tackles these issues in three different dimensions. First, we present SVEET, a system that enables inter-operability between real and simulated hosts. In order to increase the scalability of networks under study, SVEET enables time-dilated synchronization between real hosts and the discrete-event simulator. Realistic TCP congestion control algorithms are implemented in the simulator to allow seamless interactions between real and simulated hosts. SVEET is validated via extensive experiments and its capabilities are assessed through case studies involving real applications. Second, we present PrimoGENI, a system that allows a distributed discrete-event simulator, running in real-time, to interact with real network entities in a federated environment. PrimoGENI greatly enhances the flexibility of network experiments, through which a great variety of network conditions can be reproduced to examine what-if questions. Furthermore, PrimoGENI performs resource management functions, on behalf of the user, for instantiating network experiments on shared infrastructures. Finally, to further increase the scalability of network testbeds to handle large-scale high-capacity networks, we present a novel symbiotic simulation approach. We present SymbioSim, a testbed for large-scale network experimentation where a high-performance simulation system closely cooperates with an emulation system in a mutually beneficial way. On the one hand, the simulation system benefits from incorporating the traffic metadata from real applications in the emulation system to reproduce the realistic traffic conditions. On the other hand, the emulation system benefits from receiving the continuous updates from the simulation system to calibrate the traffic between real applications. Specific techniques that support the symbiotic approach include: 1) a model downscaling scheme that can significantly reduce the complexity of the large-scale simulation model, resulting in an efficient emulation system for modulating the high-capacity network traffic between real applications; 2) a queuing network model for the downscaled emulation system to accurately represent the network effects of the simulated traffic; and 3) techniques for reducing the synchronization overhead between the simulation and emulation systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our nation’s highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traffic incidents are a major source of traffic congestion on freeways. Freeway traffic diversion using pre-planned alternate routes has been used as a strategy to reduce traffic delays due to major traffic incidents. However, it is not always beneficial to divert traffic when an incident occurs. Route diversion may adversely impact traffic on the alternate routes and may not result in an overall benefit. This dissertation research attempts to apply Artificial Neural Network (ANN) and Support Vector Regression (SVR) techniques to predict the percent of delay reduction from route diversion to help determine whether traffic should be diverted under given conditions. The DYNASMART-P mesoscopic traffic simulation model was applied to generate simulated data that were used to develop the ANN and SVR models. A sample network that comes with the DYNASMART-P package was used as the base simulation network. A combination of different levels of incident duration, capacity lost, percent of drivers diverted, VMS (variable message sign) messaging duration, and network congestion was simulated to represent different incident scenarios. The resulting percent of delay reduction, average speed, and queue length from each scenario were extracted from the simulation output. The ANN and SVR models were then calibrated for percent of delay reduction as a function of all of the simulated input and output variables. The results show that both the calibrated ANN and SVR models, when applied to the same location used to generate the calibration data, were able to predict delay reduction with a relatively high accuracy in terms of mean square error (MSE) and regression correlation. It was also found that the performance of the ANN model was superior to that of the SVR model. Likewise, when the models were applied to a new location, only the ANN model could produce comparatively good delay reduction predictions under high network congestion level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global connectivity, for anyone, at anyplace, at anytime, to provide high-speed, high-quality, and reliable communication channels for mobile devices, is now becoming a reality. The credit mainly goes to the recent technological advances in wireless communications comprised of a wide range of technologies, services, and applications to fulfill the particular needs of end-users in different deployment scenarios (Wi-Fi, WiMAX, and 3G/4G cellular systems). In such a heterogeneous wireless environment, one of the key ingredients to provide efficient ubiquitous computing with guaranteed quality and continuity of service is the design of intelligent handoff algorithms. Traditional single-metric handoff decision algorithms, such as Received Signal Strength (RSS) based, are not efficient and intelligent enough to minimize the number of unnecessary handoffs, decision delays, and call-dropping and/or blocking probabilities. This research presented a novel approach for the design and implementation of a multi-criteria vertical handoff algorithm for heterogeneous wireless networks. Several parallel Fuzzy Logic Controllers were utilized in combination with different types of ranking algorithms and metric weighting schemes to implement two major modules: the first module estimated the necessity of handoff, and the other module was developed to select the best network as the target of handoff. Simulations based on different traffic classes, utilizing various types of wireless networks were carried out by implementing a wireless test-bed inspired by the concept of Rudimentary Network Emulator (RUNE). Simulation results indicated that the proposed scheme provided better performance in terms of minimizing the unnecessary handoffs, call dropping, and call blocking and handoff blocking probabilities. When subjected to Conversational traffic and compared against the RSS-based reference algorithm, the proposed scheme, utilizing the FTOPSIS ranking algorithm, was able to reduce the average outage probability of MSs moving with high speeds by 17%, new call blocking probability by 22%, the handoff blocking probability by 16%, and the average handoff rate by 40%. The significant reduction in the resulted handoff rate provides MS with efficient power consumption, and more available battery life. These percentages indicated a higher probability of guaranteed session continuity and quality of the currently utilized service, resulting in higher user satisfaction levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Annual Average Daily Traffic (AADT) is a critical input to many transportation analyses. By definition, AADT is the average 24-hour volume at a highway location over a full year. Traditionally, AADT is estimated using a mix of permanent and temporary traffic counts. Because field collection of traffic counts is expensive, it is usually done for only the major roads, thus leaving most of the local roads without any AADT information. However, AADTs are needed for local roads for many applications. For example, AADTs are used by state Departments of Transportation (DOTs) to calculate the crash rates of all local roads in order to identify the top five percent of hazardous locations for annual reporting to the U.S. DOT. ^ This dissertation develops a new method for estimating AADTs for local roads using travel demand modeling. A major component of the new method involves a parcel-level trip generation model that estimates the trips generated by each parcel. The model uses the tax parcel data together with the trip generation rates and equations provided by the ITE Trip Generation Report. The generated trips are then distributed to existing traffic count sites using a parcel-level trip distribution gravity model. The all-or-nothing assignment method is then used to assign the trips onto the roadway network to estimate the final AADTs. The entire process was implemented in the Cube demand modeling system with extensive spatial data processing using ArcGIS. ^ To evaluate the performance of the new method, data from several study areas in Broward County in Florida were used. The estimated AADTs were compared with those from two existing methods using actual traffic counts as the ground truths. The results show that the new method performs better than both existing methods. One limitation with the new method is that it relies on Cube which limits the number of zones to 32,000. Accordingly, a study area exceeding this limit must be partitioned into smaller areas. Because AADT estimates for roads near the boundary areas were found to be less accurate, further research could examine the best way to partition a study area to minimize the impact.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern data centers host hundreds of thousands of servers to achieve economies of scale. Such a huge number of servers create challenges for the data center network (DCN) to provide proportionally large bandwidth. In addition, the deployment of virtual machines (VMs) in data centers raises the requirements for efficient resource allocation and find-grained resource sharing. Further, the large number of servers and switches in the data center consume significant amounts of energy. Even though servers become more energy efficient with various energy saving techniques, DCN still accounts for 20% to 50% of the energy consumed by the entire data center. The objective of this dissertation is to enhance DCN performance as well as its energy efficiency by conducting optimizations on both host and network sides. First, as the DCN demands huge bisection bandwidth to interconnect all the servers, we propose a parallel packet switch (PPS) architecture that directly processes variable length packets without segmentation-and-reassembly (SAR). The proposed PPS achieves large bandwidth by combining switching capacities of multiple fabrics, and it further improves the switch throughput by avoiding padding bits in SAR. Second, since certain resource demands of the VM are bursty and demonstrate stochastic nature, to satisfy both deterministic and stochastic demands in VM placement, we propose the Max-Min Multidimensional Stochastic Bin Packing (M3SBP) algorithm. M3SBP calculates an equivalent deterministic value for the stochastic demands, and maximizes the minimum resource utilization ratio of each server. Third, to provide necessary traffic isolation for VMs that share the same physical network adapter, we propose the Flow-level Bandwidth Provisioning (FBP) algorithm. By reducing the flow scheduling problem to multiple stages of packet queuing problems, FBP guarantees the provisioned bandwidth and delay performance for each flow. Finally, while DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates fluctuating patterns, we propose a joint host-network optimization scheme to enhance the energy efficiency of DCNs during off-peak traffic hours. The proposed scheme utilizes a unified representation method that converts the VM placement problem to a routing problem and employs depth-first and best-fit search to find efficient paths for flows.