4 resultados para nematodes
em Digital Commons at Florida International University
Resumo:
Eutrophication from anthropogenic nutrient enrichment is a primary threat to the oligotrophic freshwater marshes of southern Florida. Macrophyte and periphyton response to increased phosphorus (P) has been well documented in both correlative and experimental studies, but the response of consumer communities remains poorly understood, especially in southern marl prairies. We conducted a P-loading experiment in in situ mesocosms in Taylor Slough, Everglades National Park, and examined the response of macroinvertebrate communities. Mesocosms at two sites were loaded weekly with P at four levels: control (0 g P/m2/yr), low (0.2 g P/m2/yr), intermediate (0.8 g P/m2/yr), and high (3.2 g P/m2/ yr). After ∼2 yrs of P-loading, macroinvertebrates were sampled using periphyton mat and benthic floc cores. Densities of macroinvertebrate taxa (no./g AFDM) were two to 16 times higher in periphyton mats than benthic floc. Periphyton biomass decreased with enrichment at one site, and periphyton was absent from many intermediate and all high P treatments at both sites. Total macroinvertebrate density in periphyton mats increased with intermediate P loads, driven primarily by chironomids and nematodes. Conversely, total macroinvertebrate density in benthic floc decreased with enrichment, driven primarily by loss of chironomids and ceratopogonids (Dasyhelea). This study suggests that macroinvertebrate density increases with enrichment until periphyton mats are lost, after which it decreases, and mat infauna fail to move into benthic substrates in response to mat loss. These results were noted at nutrient levels too low to yield anoxia, and we believe that the decrease of macroinvertebrate density resulted from a loss of habitat. This work illustrates the importance of periphyton mats as habitat for macroinvertebrates in the Everglades. This study also indicates that in this system, macroinvertebrate sampling should be designed to target periphyton mats or conducted with special attention to inclusion of substrates relative to their coverage.
Resumo:
Wolbachia pipientis are bacterial endosymbionts carried by millions of invertebrate species, including ~40% of insect species and some filarial nematodes. In insects, basic Wolbachia research has potential applications in controlling vector borne disease. Conversely, Wolbachia of filarial nematodes are causative agents of neglected tropical diseases such as lymphatic filariasis and African river blindness. However, remarkably little is known about how Wolbachia interact with their hosts at the molecular level. Understanding this is important to inform the basis for symbiosis and help prevent human disease. I used a high-throughput proteomics approach to study how Drosophila host cells are modified by Wolbachia infection. This analysis identified 23 Drosophila proteins that significantly changed in amount as a result of Wolbachia infection. A subset of differentially abundant host proteins were consistent with Wolbachia-associated phenotypes reported previously. This study also provides the first ever discovery-based evidence for a Wolbachia-associated change in maternal germline histone loads, which has possible implications in Rescue of a common Wolbachia-induced reproductive manipulation known as Cytoplasmic Incompatibility.
Resumo:
Wolbachia pipientis are bacterial endosymbionts of arthropods and in some filarial nematodes. Wolbachia are of particular interest because nematodeWolbachia have been shown to cause the diseases African river blindness and Lymphatic Filariasis. Doxycycline can be used to eliminate nematode Wolbachia, however, more efficient treatments are needed. Ideally, we would like to repurpose another FDA approved drug that helps to shorten treatment duration. Vitamins are one of the best classes of FDA approved compounds, generally recognized as safe. Interestingly, prior work by Serbus and colleagues found that dietary yeast, which is highly enriched in vitamins, dramatically reducesWolbachia titer in Drosophila melanogaster ovarian tissue. Imaging data indicated that the Wolbachia nucleoids were disrupted in response to yeast. This raised the possibility that yeast cells contain a bio-reactive, anti-Wolbachiacompound. Our close examination of yeast nutritional information identified which vitamins are most highly enriched in yeast. We then administered several of these to D. melanogaster, and saw that two of these led to reduced ovarianWolbachia titers, analogous to yeast-fed flies. This was especially interesting, as both vitamins are critical for functioning of the same biochemical pathway. We used retested effect of one of these vitamins in oogenesis by performing a dilution series, and achieved positive correlation from this dilution series. This opens up the avenue for clarifying the mechanism of how vitamins suppressWolbachia titer, and for testing enhancement of Doxycycline, to hopefully provide faster, more affordable treatment for millions of patients.
Resumo:
Wolbachia pipientis are bacterial endosymbionts of arthropods and in some filarial nematodes. Wolbachia are of particular interest because nematodeWolbachia have been shown to cause the diseases African river blindness and Lymphatic Filariasis. Doxycycline can be used to eliminate nematode Wolbachia, however, more efficient treatments are needed. Ideally, we would like to repurpose another FDA approved drug that helps to shorten treatment duration. Vitamins are one of the best classes of FDA approved compounds, generally recognized as safe. Interestingly, prior work by Serbus and colleagues found that dietary yeast, which is highly enriched in vitamins, dramatically reducesWolbachia titer in Drosophila melanogaster ovarian tissue. Imaging data indicated that the Wolbachia nucleoids were disrupted in response to yeast. This raised the possibility that yeast cells contain a bio-reactive, anti-Wolbachiacompound. Our close examination of yeast nutritional information identified which vitamins are most highly enriched in yeast. We then administered several of these to D. melanogaster, and saw that two of these led to reduced ovarianWolbachia titers, analogous to yeast-fed flies. This was especially interesting, as both vitamins are critical for functioning of the same biochemical pathway. We used retested effect of one of these vitamins in oogenesis by performing a dilution series, and achieved positive correlation from this dilution series. This opens up the avenue for clarifying the mechanism of how vitamins suppressWolbachia titer, and for testing enhancement of Doxycycline, to hopefully provide faster, more affordable treatment for millions of patients.