3 resultados para myocardial vascularization
em Digital Commons at Florida International University
Resumo:
Accurately assessing the extent of myocardial tissue injury induced by Myocardial infarction (MI) is critical to the planning and optimization of MI patient management. With this in mind, this study investigated the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to characterize a myocardial infarct at the different stages of its development. An animal study was conducted using twenty male Sprague-Dawley rats with MI. In vivo fluorescence spectra at 337 nm excitation and diffuse reflectance between 400 nm and 900 nm were measured from the heart using a portable fiber-optic spectroscopic system. Spectral acquisition was performed on (1) the normal heart region; (2) the region immediately surrounding the infarct; and (3) the infarcted region—one, two, three and four weeks into MI development. The spectral data were divided into six subgroups according to the histopathological features associated with various degrees/severities of myocardial tissue injury as well as various stages of myocardial tissue remodeling, post infarction. Various data processing and analysis techniques were employed to recognize the representative spectral features corresponding to various histopathological features associated with myocardial infarction. The identified spectral features were utilized in discriminant analysis to further evaluate their effectiveness in classifying tissue injuries induced by MI. In this study, it was observed that MI induced significant alterations (p < 0.05) in the diffuse reflectance spectra, especially between 450 nm and 600 nm, from myocardial tissue within the infarcted and surrounding regions. In addition, MI induced a significant elevation in fluorescence intensities at 400 and 460 nm from the myocardial tissue from the same regions. The extent of these spectral alterations was related to the duration of the infarction. Using the spectral features identified, an effective tissue injury classification algorithm was developed which produced a satisfactory overall classification result (87.8%). The findings of this research support the concept that optical spectroscopy represents a useful tool to non-invasively determine the in vivo pathophysiological features of a myocardial infarct and its surrounding tissue, thereby providing valuable real-time feedback to surgeons during various surgical interventions for MI.
Resumo:
In recent decades, the rapid development of optical spectroscopy for tissue diagnosis has been indicative of its high clinical value. The goal of this research is to prove the feasibility of using diffuse reflectance spectroscopy and fluorescence spectroscopy to assess myocardial infarction (MI) in vivo. The proposed optical technique was designed to be an intra-operative guidance tool that can provide useful information about the condition of an infarct for surgeons and researchers. ^ In order to gain insight into the pathophysiological characteristics of an infarct, two novel spectral analysis algorithms were developed to interpret diffuse reflectance spectra. The algorithms were developed based on the unique absorption properties of hemoglobin for the purpose of retrieving regional hemoglobin oxygenation saturation and concentration data in tissue from diffuse reflectance spectra. The algorithms were evaluated and validated using simulated data and actual experimental data. ^ Finally, the hypothesis of the study was validated using a rabbit model of MI. The mechanism by which the MI was induced was the ligation of a major coronary artery of the left ventricle. Three to four weeks after the MI was induced, the extent of myocardial tissue injury and the evolution of the wound healing process were investigated using the proposed spectroscopic methodology as well as histology. The correlations between spectral alterations and histopathological features of the MI were analyzed statistically. ^ The results of this PhD study demonstrate the applicability of the proposed optical methodology for assessing myocardial tissue damage induced by MI in vivo. The results of the spectral analysis suggest that connective tissue proliferation induced by MI significantly alter the characteristics of diffuse reflectance and fluorescence spectra. The magnitudes of the alterations could be quantitatively related to the severity and extensiveness of connective tissue proliferation.^
Resumo:
Accurately assessing the extent of myocardial tissue injury induced by Myocardial infarction (MI) is critical to the planning and optimization of MI patient management. With this in mind, this study investigated the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to characterize a myocardial infarct at the different stages of its development. An animal study was conducted using twenty male Sprague-Dawley rats with MI. In vivo fluorescence spectra at 337 nm excitation and diffuse reflectance between 400 nm and 900 nm were measured from the heart using a portable fiber-optic spectroscopic system. Spectral acquisition was performed on - (1) the normal heart region; (2) the region immediately surrounding the infarct; and (3) the infarcted region - one, two, three and four weeks into MI development. The spectral data were divided into six subgroups according to the histopathological features associated with various degrees / severities of myocardial tissue injury as well as various stages of myocardial tissue remodeling, post infarction. Various data processing and analysis techniques were employed to recognize the representative spectral features corresponding to various histopathological features associated with myocardial infarction. The identified spectral features were utilized in discriminant analysis to further evaluate their effectiveness in classifying tissue injuries induced by MI. In this study, it was observed that MI induced significant alterations (p < 0.05) in the diffuse reflectance spectra, especially between 450 nm and 600 nm, from myocardial tissue within the infarcted and surrounding regions. In addition, MI induced a significant elevation in fluorescence intensities at 400 and 460 nm from the myocardial tissue from the same regions. The extent of these spectral alterations was related to the duration of the infarction. Using the spectral features identified, an effective tissue injury classification algorithm was developed which produced a satisfactory overall classification result (87.8%). The findings of this research support the concept that optical spectroscopy represents a useful tool to non-invasively determine the in vivo pathophysiological features of a myocardial infarct and its surrounding tissue, thereby providing valuable real-time feedback to surgeons during various surgical interventions for MI.