2 resultados para molten castings

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A lot of mixed vitrified waste exists at DOE sites, which contain valuable metal having great potential for being reused in industry. Of these useful metals, steel constitutes more than 45% of the volume. Using the differential centrifugal separation technology, steel is separated by using remote melting of the mixed waste. The high costs involved are directly proportional to the time involved in separation of the steel from the mixed waste. This is determined by using similitude principles. Having obtained a solidified steel ingot by melting, it is essential to determine the decontaminated portions of the ingot that can be released to industry. Two parameters representing measures of separation are proposed—the Centrifugal Fluid Separation Number and the Thermal Separation Number. Regression correlations are determined to express the estimated time of separation. Experimental analysis of solidified ingots has shown that when the Thermal Separation Number is less than 1700 the steel contains little or no trace of glass. This result can be used to recycle steel back to industry. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the many promising applications of metal/ceramic joining is in biomedical implantable devices. This work is focused on vacuum brazing of C.P titanium to 96% alumina ceramic using pure gold as the filler metal. A novel method of brazing is developed where resistance heating of C.P titanium is done inside a thermal evaporator using a Ta heating electrode. The design of electrode is optimized using Ansys resistive heating simulations. The materials chosen in this study are biocompatible and have prior history in implantable devices approved by FDA. This research is part of Boston Retinal implant project to make a biocompatible implantable device (www.bostonretina.org). ^ Pure gold braze has been used in the construction of single terminal feedthrough in low density hermetic packages utilizing a single platinum pin brazed to an alumina or sapphire ceramic donut (brazed to a titanium case or ferrule for many years in implantable pacemakers. Pure gold (99.99%) brazing of 96% alumina ceramic with CP titanium has been performed and evaluated in this dissertation. Brazing has been done by using electrical resistance heating. The 96% alumina ceramic disk was manufactured by high temperature cofired ceramic (HTCC) processing while the Ti ferrule and gold performs were purchased from outside. Hermetic joints having leak rate of the order of 1.6 × 10-8 atm-cc/ sec on a helium leak detector were measured. ^ Alumina ceramics made by HTCC processing were centreless grounded utilizing 800 grit diamond wheel to provide a smooth surface for sputtering of a thin film of Nb. Since pure alumina demonstrates no adhesion or wetting to gold, an adhesion layer must be used on the alumina surface. Niobium (Nb), Tantalum (Ta) and Tungsten (W) were chosen for evaluation since all are refractory (less dissolution into molten gold), all form stable oxides (necessary for adhesion to alumina) and all are readily thin film deposited as metals. Wetting studies are also performed to determine the wetting angle of pure gold to Ti, Ta, Nb and W substrates. Nano tribological scratch testing of thin film of Nb (which demonstrated the best wetting properties towards gold) on polished 96% alumina ceramic is performed to determine the adhesion strength of thin film to the substrate. The wetting studies also determined the thickness of the intermetallic compounds layers formed between Ti and gold, reaction microstructure and the dissolution of the metal into the molten gold.^