4 resultados para molecular data
em Digital Commons at Florida International University
Resumo:
In the first part of this study human immunodeficiency virus type 1 (HIV-1) proviral DNA sequences derived from 201 clones of the C2-V3 env region and the first exon of the tat gene were obtained from six MV-1 infected heterosexual couples. These molecular data were used to confirm the epidemiological relationships. The ability of the molecular data to draw such conclusions was also tested with multiple phylogenetic analyses. The tat region was much more useful in establishing epidemiological relationships than the commonly used C2-V3.^ Subsequently, using nucleotide sequences from the first exon of the Tat gene, we tested the hypothesis that a Florida dentist (a common source) infected five of his patients in the course of dental procedures, against the null hypothesis that the dentist and each individual of the dental group independently acquired the virus within the local community. Multiple phylogenetic analyses demonstrated that the sequences of the five patients were significantly more related to each other than to sequences of the controls. Our results using Tat sequences, combined with envelope sequence data, strongly support a common phylogenetic epidemiological relationship among these five patients.^ A third study is presented, which deals with the effects of genomic variations in drug resistance. HIV-1 reverse transcriptase (RT) mutations were detected in DNA from peripheral blood mononuclear cells from 11 of 12 HIV-infected children after 11-20 months of zidovudine monotherapy. The codon 41/215 mutant combination was associated with general decline in health status. Patients developing the codon 70 mutation tended to have a better health status. ^
Resumo:
Dioon Lindl. (Zamiaceae) is a small genus restricted to Mexico (12 species) and Honduras (one species). Previous systematic studies have been unable to fully resolve species relationships within the genus. Phylogenetic analyses were conducted with data from several sources, including Restriction Fragment Length Polymorphisms from the chloroplast genome, morphology, two introns of the low copy nuclear gene S-adenosyl-L-homocysteine hydrolase (SAHH) and the 5.8S/ITS2 regions of the nuclear ribosomal DNA. The goals of the study were to construct a total evidence species level phylogeny and to explore current biogeographical hypotheses. None of the analyses performed produced a fully resolved topology. Dioon is comprised of two main lineages (the Edule and Spinulosum Clades), which represents an ancient divergence within the genus. The two introns of the nuclear gene SAHH offer additional evidence for the split into two lineages. Intron 2 contains a 18 bp deletion in the Spinulosum Clade, providing a synapomorphy for that group. The 5.8S/ITS2 regions were highly polymorphic and subsequently omitted from the combined analyses. In order to visualize congruence between morphology and molecular data, morphological characters were mapped onto the combined molecular tree. Current biogeographical hypotheses of a general northward pattern of migration and speciation are supported here. However, sister relationships within the Edule Clade are not fully resolved. Seven DNA microsatellite markers were developed to investigate patterns of genetic variation of seven populations of D. edule, a species restricted to Eastern Mexico. We found that most of the genetic variation lies within populations (Ho = 0.2166–0.3657) and that levels of population differentiation are low (Fst = 0.088); this finding is congruent with the breeding system of this species, dioicy. Four of the populations deviate from Hardy Weinberg Equilibrium and have a high number of identical genotypes, we suggest that this unexpected pattern is due to the life-history strategy of the species coupled with the few number of polymorphic loci detected in these populations. Our results are not congruent with earlier evidence from morphology and allozyme markers that suggest that the two northernmost populations represent a distinct entity that is recognized by some taxonomists as D. angustifolium.
Resumo:
The Caribbean Island Biodiversity Hotspot is the largest insular system of the New World and a priority for biodiversity conservation worldwide. The tribe Adeliae (Euphorbiaceae) has over 35 species endemic to this hotspot, representing one of the most extraordinary cases of speciation in the West Indies, involving taxa from Cuba, Hispaniola, Jamaica, and the Bahamas. These species form a monophyletic group and traditionally have been accommodated in two endemic genera: Lasiocroton and Leucocroton. A study based on: (1) scanning electron microscopy of pollen and trichomes, (2) macromorphology, and (3) molecular data, was conducted to reveal generic relationships within this group. Phylogenies were based on parsimony and Bayesian analyses of nucleotide sequences of the ITS regions of the nuclear ribosomal DNA and the non-coding chloroplast DNA spacers psbM-trnD and ycf6-pcbM. One species, Lasiocroton trelawniensis, was transferred from the tribe into the genus Bernardia. Of the remaining species, three major monophyletic assemblages were revealed, one was restricted to limestone ares of Hispaniola and was sister to a clade with two monophyletic genera, Lasiocroton and Leucocroton. Morphological, biogeographical, and ecological data provided additional support for each of these three monophyletic assemblages. The Hispaniolan taxa were accommodated in a new genus with four species: Garciadelia. Leucocroton includes the nickel hyperaccumulating species from serpentine soils of Cuba, while the rest of the species were placed in Lasiocroton, a genus restricted to limestone areas. The geographic history of the islands as well as the phylogenetic placement of the Leucocroton-alliance, allows the research to include the historical biogeography of the alliance across the islands of the Caribbean based on a dispersal-vicariance analysis. The alliance arose on Eastern Cuba and Hispaniola, with Lasiocroton and Leucocroton diverging on Eastern Cuba according to soil type. Within Leucocroton, the analysis shows two migrations across the serpentine soils of Cuba. Additional morphological, ecological, and phylogenetic analyses support four new species in Cuba (Lasiocroton gutierrezii) and Hispaniola ( Garciadelia abbottii, G. castilloae, and G. mejiae). ^
Resumo:
Background The infraorder Anomura has long captivated the attention of evolutionary biologists due to its impressive morphological diversity and ecological adaptations. To date, 2500 extant species have been described but phylogenetic relationships at high taxonomic levels remain unresolved. Here, we reconstruct the evolutionary history—phylogeny, divergence times, character evolution and diversification—of this speciose clade. For this purpose, we sequenced two mitochondrial (16S and 12S) and three nuclear (H3, 18S and 28S) markers for 19 of the 20 extant families, using traditional Sanger and next-generation 454 sequencing methods. Molecular data were combined with 156 morphological characters in order to estimate the largest anomuran phylogeny to date. The anomuran fossil record allowed us to incorporate 31 fossils for divergence time analyses. Results Our best phylogenetic hypothesis (morphological + molecular data) supports most anomuran superfamilies and families as monophyletic. However, three families and eleven genera are recovered as para- and polyphyletic. Divergence time analysis dates the origin of Anomura to the Late Permian ~259 (224–296) MYA with many of the present day families radiating during the Jurassic and Early Cretaceous. Ancestral state reconstruction suggests that carcinization occurred independently 3 times within the group. The invasion of freshwater and terrestrial environments both occurred between the Late Cretaceous and Tertiary. Diversification analyses found the speciation rate to be low across Anomura, and we identify 2 major changes in the tempo of diversification; the most significant at the base of a clade that includes the squat-lobster family Chirostylidae. Conclusions Our findings are compared against current classifications and previous hypotheses of anomuran relationships. Many families and genera appear to be poly- or paraphyletic suggesting a need for further taxonomic revisions at these levels. A divergence time analysis provides key insights into the origins of major lineages and events and the timing of morphological (body form) and ecological (habitat) transitions. Living anomuran biodiversity is the product of 2 major changes in the tempo of diversification; our initial insights suggest that the acquisition of a crab-like form did not act as a key innovation.