4 resultados para moisture-exposed cracks in mica

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores the role of engagement in adult learning based on Illeris’ three dimensional model of learning and Yang’s holistic theory of knowledge and learning. Engagement and learning are integrated processes by which adult learners gain a deeper understanding and make meaning of the activities he or she is exposed to in a given learning environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of a multi-university research program funded by NSF, a comprehensive experimental and analytical study of seismic behavior of hybrid fiber reinforced polymer (FRP)-concrete column is presented in this dissertation. Experimental investigation includes cyclic tests of six large-scale concrete-filled FRP tube (CFFT) and RC columns followed by monotonic flexural tests, a nondestructive evaluation of damage using ultrasonic pulse velocity in between the two test sets and tension tests of sixty-five FRP coupons. Two analytical models using ANSYS and OpenSees were developed and favorably verified against both cyclic and monotonic flexural tests. The results of the two methods were compared. A parametric study was also carried out to investigate the effect of three main parameters on primary seismic response measures. The responses of typical CFFT columns to three representative earthquake records were also investigated. The study shows that only specimens with carbon FRP cracked, whereas specimens with glass or hybrid FRP did not show any visible cracks throughout cyclic tests. Further monotonic flexural tests showed that carbon specimens both experienced flexural cracks in tension and crumpling in compression. Glass or hybrid specimens, on the other hand, all showed local buckling of FRP tubes. Compared with conventional RC columns, CFFT column possesses higher flexural strength and energy dissipation with an extended plastic hinge region. Among all CFFT columns, the hybrid lay-up demonstrated the highest flexural strength and initial stiffness, mainly because of its high reinforcement index and FRP/concrete stiffness ratio, respectively. Moreover, at the same drift ratio, the hybrid lay-up was also considered as the best in term of energy dissipation. Specimens with glassfiber tubes, on the other hand, exhibited the highest ductility due to better flexibility of glass FRP composites. Furthermore, ductility of CFFTs showed a strong correlation with the rupture strain of FRP. Parametric study further showed that different FRP architecture and rebar types may lead to different failure modes for CFFT columns. Transient analysis of strong ground motions showed that the column with off-axis nonlinear filament-wound glass FRP tube exhibited a superior seismic performance to all other CFFTs. Moreover, higher FRP reinforcement ratios may lead to a brittle system failure, while a well-engineered FRP reinforcement configuration may significantly enhance the seismic performance of CFFT columns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the use of larger foraminifera in determining the biostratigraphy of the Avon Park Formation and the Ocala Limestone in central Florida. Sedimentary rocks of the Avon Park Formation are the oldest exposed deposits in the state of Florida, and together with the Ocala Limestone comprise a part of the confining unit of the Floridan Aquifer, a major source of Florida's water supply. ^ Material from the ROMP 29A core collected by the U.S. Geological Survey was evaluated and compared to previous studies of the biostratigraphy of the formations. The larger foraminifera of the Avon Park Formation were examined in thin section, and those of the Ocala Limestone were free specimens. The larger foraminifera from both units were described and identified, and the biostratigraphy determined. The morphological features of the larger foraminifera of the Ocala Limestone were measured and analyzed at various depths within the ROMP 29A core.^ The Avon Park Formation contains predominantly the shallow-water, conical foraminifera Fallotella cookei, Fallotella floridana, Pseudochrysalidina floridana, Coleiconus christianaensis, Coleiconus sp. A, Coskinolina sp. A, Coskinolina sp. B, Fallotella sp. A, Fallotella sp. B, Fabularia vaughani and larger miliolids. ^ The Ocala Limestone contains a different, deeper water assemblage that included the larger foraminifera Heterostegina ocalana, Lepidocyclina ocalana varieties, Lepidocyclina chaperi, Lepidocyclina pustulosa, Nummulites willcoxi, Nummulites striatoreticulatus, Nummulites floridensis and Pseudophragmina spp. A, B, and C. The age of the Avon Park Formation was corroborated by the occurrence of the biomarker echinoid Neolaganum dalli as Eocene, and the Ocala Limestone also contained Eocene larger foraminifera with Eocene to possibly Oligocene calcareous nannofossils. The distribution of the larger foraminifera of the Avon Park Formation was correlated with the subtidal and peritidal zones of the continental shelf. Analyses of variance showed that the changes in measurements of the morphology in Heterostegina ocalana, Lepidocyclina spp. and Nummulites spp. were correlated with change in the depositional environments.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of a multi-university research program funded by NSF, a comprehensive experimental and analytical study of seismic behavior of hybrid fiber reinforced polymer (FRP)-concrete column is presented in this dissertation. Experimental investigation includes cyclic tests of six large-scale concrete-filled FRP tube (CFFT) and RC columns followed by monotonic flexural tests, a nondestructive evaluation of damage using ultrasonic pulse velocity in between the two test sets and tension tests of sixty-five FRP coupons. Two analytical models using ANSYS and OpenSees were developed and favorably verified against both cyclic and monotonic flexural tests. The results of the two methods were compared. A parametric study was also carried out to investigate the effect of three main parameters on primary seismic response measures. The responses of typical CFFT columns to three representative earthquake records were also investigated. The study shows that only specimens with carbon FRP cracked, whereas specimens with glass or hybrid FRP did not show any visible cracks throughout cyclic tests. Further monotonic flexural tests showed that carbon specimens both experienced flexural cracks in tension and crumpling in compression. Glass or hybrid specimens, on the other hand, all showed local buckling of FRP tubes. Compared with conventional RC columns, CFFT column possesses higher flexural strength and energy dissipation with an extended plastic hinge region. Among all CFFT columns, the hybrid lay-up demonstrated the highest flexural strength and initial stiffness, mainly because of its high reinforcement index and FRP/concrete stiffness ratio, respectively. Moreover, at the same drift ratio, the hybrid lay-up was also considered as the best in term of energy dissipation. Specimens with glassfiber tubes, on the other hand, exhibited the highest ductility due to better flexibility of glass FRP composites. Furthermore, ductility of CFFTs showed a strong correlation with the rupture strain of FRP. Parametric study further showed that different FRP architecture and rebar types may lead to different failure modes for CFFT columns. Transient analysis of strong ground motions showed that the column with off-axis nonlinear filament-wound glass FRP tube exhibited a superior seismic performance to all other CFFTs. Moreover, higher FRP reinforcement ratios may lead to a brittle system failure, while a well-engineered FRP reinforcement configuration may significantly enhance the seismic performance of CFFT columns.