10 resultados para modulus of continuity

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern writers like Djuna Barnes allow for the post-modern fluidity and explosion of sex and gender without finalizing either in a fixed form. Whereas the classical, archetypal androgyne is made up of two halves, one man and one woman; the deconstructed androgynous figure is not constituted of oppositional terms which would reflect an essential and unimpeachable truth. I reveal the way Djuna Barnes’ Nightwood not only thematizes the fluid androgyne, but also cleverly verbalizes David Wood’s perpetual and un-dischargable “debt” to extra-discursivity while poetically critiquing gender “appropriateness,” societal constraints, and the constitution of identity. Barnes presents a decentralized, ungrounded and non-prescribed world in Nightwood not only through her cross-dressing and androgynous characters, but also in her poetics, her assertion of the open-ended quality of language, and a strong imperative to negotiate our physical existence in a world of fluid gender and sexual boundaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated inter- and intra-individual changes in acculturation, acculturative stress, and adaptation experiences, as well as their associations with adjustment outcomes among a group of Latino adolescents in South Florida. Specifically, the current study investigated the incidence, changes, and effects of stressors that arise from acculturation experiences (e.g., related to culture, discrimination, language difficulties) among Latino youth by employing a person-centered approach and a longitudinal research design. Four separate groups of analyses were conducted to investigate (a) within-group differences in levels of reported acculturative stress, (b) patterns of continuity and discontinuity in levels of acculturative stress across time, (c) adjustment outcomes associated with distinct patterns of acculturative stress within each measurement occasion, and (d) predictive relations between longitudinal acculturative stress trajectories in early adolescence and psychosocial adjustment outcomes in young adulthood. ^ Results from the multivariate analyses indicated great within group heterogeneity in acculturative stress among Latino youth during early adolescence, as well as significant continuity and discontinuity in the patterns of shifts among acculturative stress profiles between contiguous measurement occasions. Within each developmental period, membership in acculturative stress clusters was significantly and differentially associated with multiple adjustment outcomes, suggesting that maladaptive outcomes are more likely to occur among Latino adolescents experiencing high levels of psychological distress across multiple acculturative domains. In general, Latino youth acculturation is best understood as multi-dimensional, to be variable across time, and to be fluid and responsive to multiple factors and influences. Implications for preventive strategies are discussed with regard to acculturation and developmental psychology research literatures. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980’s. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) - Network for Earthquake Engineering Simulation Research (NEESR) program.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Structural vibration control is of great importance. Current active and passive vibration control strategies usually employ individual elements to fulfill this task, such as viscoelastic patches for providing damping, transducers for picking up signals and actuators for inputting actuating forces. The goal of this dissertation work is to design, manufacture, investigate and apply a new type of multifunctional composite material for structural vibration control. This new composite, which is based on multi-walled carbon nanotube (MWCNT) film, is potentially to function as free layer damping treatment and strain sensor simultaneously. That is, the new material integrates the transducer and the damping patch into one element. The multifunctional composite was prepared by sandwiching the MWCNT film between two adhesive layers. Static sensing test indicated that the MWCNT film sensor resistance changes almost linearly with the applied load. Sensor sensitivity factors were comparable to those of the foil strain gauges. Dynamic test indicated that the MWCNT film sensor can outperform the foil strain gage in high frequency ranges. Temperature test indicated the MWCNT sensor had good temperature stability over the range of 237 K-363 K. The Young’s modulus and shear modulus of the MWCNT film composite were acquired by nanoindentation test and direct shear test, respectively. A free vibration damping test indicated that the MWCNT composite sensor can also provide good damping without adding excessive weight to the base structure. A new model for sandwich structural vibration control was then proposed. In this new configuration, a cantilever beam covered with MWCNT composite on top and one layer of shape memory alloy (SMA) on the bottom was used to illustrate this concept. The MWCNT composite simultaneously serves as free layer damping and strain sensor, and the SMA acts as actuator. Simple on-off controller was designed for controlling the temperature of the SMA so as to control the SMA recovery stress as input and the system stiffness. Both free and forced vibrations were analyzed. Simulation work showed that this new configuration for sandwich structural vibration control was successful especially for low frequency system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column parameters on the cyclic behavior of UHPCFFT columns. Strong correlations were noted between the initial stiffness and the stiffness index, and between the moment capacity and the reinforcement index. Finally, a thorough analytical study was carried out to investigate the seismic response of the proposed steel-free UHPCFFT columns, which showed their superior earthquake resistance, as compared to their RC counterparts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980's. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) Network for Earthquake Engineering Simulation Research (NEESR) program.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work considered the micro-mechanical behavior of a long fiber embedded in an infinite matrix. Using the theory of elasticity, the idea of boundary layer and some simplifying assumptions, an approximate analytical solution was obtained for the normal and shear stresses along the fiber. The analytical solution to the problem was found for the case when the length of the embedded fiber is much greater than its radius, and the Young's modulus of the matrix was much less than that of the fiber. The analytical solution was then compared with a numerical solution based on Finite Element Analysis (FEA) using ANSYS. The numerical results showed the same qualitative behavior of the analytical solution, serving as a validation tool against lack of experimental results. In general this work provides a simple method to determine the thermal stresses along the fiber embedded in a matrix, which is the foundation for a better understanding of the interaction between the fiber and matrix in the case of the classical problem of thermal-stresses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study was to explore the psychoanalytic process that writers experience when they write memoirs. With psychoanalytic theory, the findings were that when writers compose memoirs which include repressed information, the writer's word choice or word block is heavily influenced by his/her own moral code. This idea led to the assertions that first, we are fragmented because of the discordance that arises between the structures of morality and language, the latter which includes good and evil; second, when we write memoirs, we must create a fictional identity that allows the different fragments of identity to operate under the illusion of continuity that language provides; and third, the language we use may transcend our repressed information into consciousness. The conclusion was that when past immoral truths are uncovered, the various fragments with their selfish aims and the fictional identity cease to exist in the wake of being. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study examines the contours of Turkish-American foreign relations in the post-Cold War era from 1990 to 2005. While providing an interpretive analysis, the study highlights elements of continuity and change and of convergence and divergence in the relationship between Ankara and Washington. Turkey’s encounter with its Kurdish problem at home intertwined with the emergence of an autonomous Kurdish authority in northern Iraq after the Gulf War that left a political vacuum in the region. The main argument of this dissertation is that the Kurdish question has been the central element in shaping and redefining the nature and scope of Turkish-American relations since 1991. This study finds that systemic factors primarily prevail in the early years of the post-Cold War Turkish-American relations, as had been the case during the Cold War era. However, the Turkish parliament’s rejection of the deployment of the U.S. troops in Turkey for the invasion of Iraq in 2003 could not be explained by the primacy of distribution of capabilities in the system. Instead, the role of identity, ideology, norms, and the socialization of agency through interaction and language must be considered. The Justice and Development Party’s ascension to power in 2002 magnified a wider transformation in domestic and foreign politics and reflected changes in Turkey’s own self-perception and the definition of its core interests towards the United States.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article compares two recent analyses of continuity and change in the American power structure since 1900, with a main focus on the years after World War II. The first analysis asserts that the “corporate elite” has fractured and fragmented in recent decades and no longer has the unity to have a collective impact on public policy. The second analysis claims that corporate leaders remain united, albeit with moderate-conservative and ultra-conservative differences on several issues, and continue to have a dominant collective impact on public policies that involve their major goals. After comparing the two perspectives on key issues from 1900 to 1945, the article analyzes the fractured-elite theory’s three claims about the postwar era: an activist government constrained the corporate elite, the union movement negotiated a capital-labor accord; and bank boards created policy cohesion among corporations. Finally, it compares the two perspectives on tax issues, health-care policies, and trade expansion between 1990 and 2010.