17 resultados para model driven system, semantic representation, semantic modeling, enterprise system development
em Digital Commons at Florida International University
Resumo:
This study investigated the effects of augmented prenatal auditory stimulation on postnatal visual responsivity and neural organization in bobwhite quail (Colinus virginianus). I delivered conspecific embryonic vocalizations before, during, or after the development of a multisensory, midbrain audiovisual area, the optic tectum. Postnatal simultaneous choice tests revealed that hatchlings receiving augmented auditory stimulation during optic tectum development as embryos failed to show species-typical visual preferences for a conspecific maternal hen 72 hours after hatching. Auditory simultaneous choice tests showed no hatchlings had deficits in auditory function in any of the groups, indicating deficits were specific to visual function. ZENK protein expression confirmed differences in the amount of neural plasticity in multiple neuroanatomical regions of birds receiving stimulation during optic tecturn development, compared to unmanipulated birds. The results of these experiments support the notion that the timing of augmented prenatal auditory stimulation relative to optic tectum development can impact postnatal perceptual organization in an enduring way.^
Resumo:
Query processing is a commonly performed procedure and a vital and integral part of information processing. It is therefore important and necessary for information processing applications to continuously improve the accessibility of data sources as well as the ability to perform queries on those data sources. ^ It is well known that the relational database model and the Structured Query Language (SQL) are currently the most popular tools to implement and query databases. However, a certain level of expertise is needed to use SQL and to access relational databases. This study presents a semantic modeling approach that enables the average user to access and query existing relational databases without the concern of the database's structure or technicalities. This method includes an algorithm to represent relational database schemas in a more semantically rich way. The result of which is a semantic view of the relational database. The user performs queries using an adapted version of SQL, namely Semantic SQL. This method substantially reduces the size and complexity of queries. Additionally, it shortens the database application development cycle and improves maintenance and reliability by reducing the size of application programs. Furthermore, a Semantic Wrapper tool illustrating the semantic wrapping method is presented. ^ I further extend the use of this semantic wrapping method to heterogeneous database management. Relational, object-oriented databases and the Internet data sources are considered to be part of the heterogeneous database environment. Semantic schemas resulting from the algorithm presented in the method were employed to describe the structure of these data sources in a uniform way. Semantic SQL was utilized to query various data sources. As a result, this method provides users with the ability to access and perform queries on heterogeneous database systems in a more innate way. ^
Resumo:
Software engineering researchers are challenged to provide increasingly more powerful levels of abstractions to address the rising complexity inherent in software solutions. One new development paradigm that places models as abstraction at the forefront of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code.^ Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process.^ The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources.^ At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM's synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise.^ This dissertation investigates how to decouple the DSK from the MoE and subsequently producing a generic model of execution (GMoE) from the remaining application logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis component of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions.^ This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.^
Resumo:
Software engineering researchers are challenged to provide increasingly more pow- erful levels of abstractions to address the rising complexity inherent in software solu- tions. One new development paradigm that places models as abstraction at the fore- front of the development process is Model-Driven Software Development (MDSD). MDSD considers models as first class artifacts, extending the capability for engineers to use concepts from the problem domain of discourse to specify apropos solutions. A key component in MDSD is domain-specific modeling languages (DSMLs) which are languages with focused expressiveness, targeting a specific taxonomy of problems. The de facto approach used is to first transform DSML models to an intermediate artifact in a HLL e.g., Java or C++, then execute that resulting code. Our research group has developed a class of DSMLs, referred to as interpreted DSMLs (i-DSMLs), where models are directly interpreted by a specialized execution engine with semantics based on model changes at runtime. This execution engine uses a layered architecture and is referred to as a domain-specific virtual machine (DSVM). As the domain-specific model being executed descends the layers of the DSVM the semantic gap between the user-defined model and the services being provided by the underlying infrastructure is closed. The focus of this research is the synthesis engine, the layer in the DSVM which transforms i-DSML models into executable scripts for the next lower layer to process. The appeal of an i-DSML is constrained as it possesses unique semantics contained within the DSVM. Existing DSVMs for i-DSMLs exhibit tight coupling between the implicit model of execution and the semantics of the domain, making it difficult to develop DSVMs for new i-DSMLs without a significant investment in resources. At the onset of this research only one i-DSML had been created for the user- centric communication domain using the aforementioned approach. This i-DSML is the Communication Modeling Language (CML) and its DSVM is the Communication Virtual machine (CVM). A major problem with the CVM’s synthesis engine is that the domain-specific knowledge (DSK) and the model of execution (MoE) are tightly interwoven consequently subsequent DSVMs would need to be developed from inception with no reuse of expertise. This dissertation investigates how to decouple the DSK from the MoE and sub- sequently producing a generic model of execution (GMoE) from the remaining appli- cation logic. This GMoE can be reused to instantiate synthesis engines for DSVMs in other domains. The generalized approach to developing the model synthesis com- ponent of i-DSML interpreters utilizes a reusable framework loosely coupled to DSK as swappable framework extensions. This approach involves first creating an i-DSML and its DSVM for a second do- main, demand-side smartgrid, or microgrid energy management, and designing the synthesis engine so that the DSK and MoE are easily decoupled. To validate the utility of the approach, the SEs are instantiated using the GMoE and DSKs of the two aforementioned domains and an empirical study to support our claim of reduced developmental effort is performed.
Resumo:
In the past two decades, multi-agent systems (MAS) have emerged as a new paradigm for conceptualizing large and complex distributed software systems. A multi-agent system view provides a natural abstraction for both the structure and the behavior of modern-day software systems. Although there were many conceptual frameworks for using multi-agent systems, there was no well established and widely accepted method for modeling multi-agent systems. This dissertation research addressed the representation and analysis of multi-agent systems based on model-oriented formal methods. The objective was to provide a systematic approach for studying MAS at an early stage of system development to ensure the quality of design. ^ Given that there was no well-defined formal model directly supporting agent-oriented modeling, this study was centered on three main topics: (1) adapting a well-known formal model, predicate transition nets (PrT nets), to support MAS modeling; (2) formulating a modeling methodology to ease the construction of formal MAS models; and (3) developing a technique to support machine analysis of formal MAS models using model checking technology. PrT nets were extended to include the notions of dynamic structure, agent communication and coordination to support agent-oriented modeling. An aspect-oriented technique was developed to address the modularity of agent models and compositionality of incremental analysis. A set of translation rules were defined to systematically translate formal MAS models to concrete models that can be verified through the model checker SPIN (Simple Promela Interpreter). ^ This dissertation presents the framework developed for modeling and analyzing MAS, including a well-defined process model based on nested PrT nets, and a comprehensive methodology to guide the construction and analysis of formal MAS models.^
Resumo:
With the proliferation of multimedia data and ever-growing requests for multimedia applications, there is an increasing need for efficient and effective indexing, storage and retrieval of multimedia data, such as graphics, images, animation, video, audio and text. Due to the special characteristics of the multimedia data, the Multimedia Database management Systems (MMDBMSs) have emerged and attracted great research attention in recent years. Though much research effort has been devoted to this area, it is still far from maturity and there exist many open issues. In this dissertation, with the focus of addressing three of the essential challenges in developing the MMDBMS, namely, semantic gap, perception subjectivity and data organization, a systematic and integrated framework is proposed with video database and image database serving as the testbed. In particular, the framework addresses these challenges separately yet coherently from three main aspects of a MMDBMS: multimedia data representation, indexing and retrieval. In terms of multimedia data representation, the key to address the semantic gap issue is to intelligently and automatically model the mid-level representation and/or semi-semantic descriptors besides the extraction of the low-level media features. The data organization challenge is mainly addressed by the aspect of media indexing where various levels of indexing are required to support the diverse query requirements. In particular, the focus of this study is to facilitate the high-level video indexing by proposing a multimodal event mining framework associated with temporal knowledge discovery approaches. With respect to the perception subjectivity issue, advanced techniques are proposed to support users' interaction and to effectively model users' perception from the feedback at both the image-level and object-level.
Resumo:
Petri Nets are a formal, graphical and executable modeling technique for the specification and analysis of concurrent and distributed systems and have been widely applied in computer science and many other engineering disciplines. Low level Petri nets are simple and useful for modeling control flows but not powerful enough to define data and system functionality. High level Petri nets (HLPNs) have been developed to support data and functionality definitions, such as using complex structured data as tokens and algebraic expressions as transition formulas. Compared to low level Petri nets, HLPNs result in compact system models that are easier to be understood. Therefore, HLPNs are more useful in modeling complex systems. ^ There are two issues in using HLPNs—modeling and analysis. Modeling concerns the abstracting and representing the systems under consideration using HLPNs, and analysis deals with effective ways study the behaviors and properties of the resulting HLPN models. In this dissertation, several modeling and analysis techniques for HLPNs are studied, which are integrated into a framework that is supported by a tool. ^ For modeling, this framework integrates two formal languages: a type of HLPNs called Predicate Transition Net (PrT Net) is used to model a system's behavior and a first-order linear time temporal logic (FOLTL) to specify the system's properties. The main contribution of this dissertation with regard to modeling is to develop a software tool to support the formal modeling capabilities in this framework. ^ For analysis, this framework combines three complementary techniques, simulation, explicit state model checking and bounded model checking (BMC). Simulation is a straightforward and speedy method, but only covers some execution paths in a HLPN model. Explicit state model checking covers all the execution paths but suffers from the state explosion problem. BMC is a tradeoff as it provides a certain level of coverage while more efficient than explicit state model checking. The main contribution of this dissertation with regard to analysis is adapting BMC to analyze HLPN models and integrating the three complementary analysis techniques in a software tool to support the formal analysis capabilities in this framework. ^ The SAMTools developed for this framework in this dissertation integrates three tools: PIPE+ for HLPNs behavioral modeling and simulation, SAMAT for hierarchical structural modeling and property specification, and PIPE+Verifier for behavioral verification.^
Resumo:
The increasing use of model-driven software development has renewed emphasis on using domain-specific models during application development. More specifically, there has been emphasis on using domain-specific modeling languages (DSMLs) to capture user-specified requirements when creating applications. The current approach to realizing these applications is to translate DSML models into source code using several model-to-model and model-to-code transformations. This approach is still dependent on the underlying source code representation and only raises the level of abstraction during development. Experience has shown that developers will many times be required to manually modify the generated source code, which can be error-prone and time consuming. ^ An alternative to the aforementioned approach involves using an interpreted domain-specific modeling language (i-DSML) whose models can be directly executed using a Domain Specific Virtual Machine (DSVM). Direct execution of i-DSML models require a semantically rich platform that reduces the gap between the application models and the underlying services required to realize the application. One layer in this platform is the domain-specific middleware that is responsible for the management and delivery of services in the specific domain. ^ In this dissertation, we investigated the problem of designing the domain-specific middleware of the DSVM to facilitate the bifurcation of the semantics of the domain and the model of execution (MoE) while supporting runtime adaptation and validation. We approached our investigation by seeking solutions to the following sub-problems: (1) How can the domain-specific knowledge (DSK) semantics be separated from the MoE for a given domain? (2) How do we define a generic model of execution (GMoE) of the middleware so that it is adaptable and realizes DSK operations to support delivery of services? (3) How do we validate the realization of DSK operations at runtime? ^ Our research into the domain-specific middleware was done using an i-DSML for the user-centric communication domain, Communication Modeling Language (CML), and for microgrid energy management domain, Microgrid Modeling Language (MGridML). We have successfully developed a methodology to separate the DSK and GMoE of the middleware of a DSVM that supports specialization for a given domain, and is able to perform adaptation and validation at runtime. ^
Resumo:
Petri Nets are a formal, graphical and executable modeling technique for the specification and analysis of concurrent and distributed systems and have been widely applied in computer science and many other engineering disciplines. Low level Petri nets are simple and useful for modeling control flows but not powerful enough to define data and system functionality. High level Petri nets (HLPNs) have been developed to support data and functionality definitions, such as using complex structured data as tokens and algebraic expressions as transition formulas. Compared to low level Petri nets, HLPNs result in compact system models that are easier to be understood. Therefore, HLPNs are more useful in modeling complex systems. There are two issues in using HLPNs - modeling and analysis. Modeling concerns the abstracting and representing the systems under consideration using HLPNs, and analysis deals with effective ways study the behaviors and properties of the resulting HLPN models. In this dissertation, several modeling and analysis techniques for HLPNs are studied, which are integrated into a framework that is supported by a tool. For modeling, this framework integrates two formal languages: a type of HLPNs called Predicate Transition Net (PrT Net) is used to model a system's behavior and a first-order linear time temporal logic (FOLTL) to specify the system's properties. The main contribution of this dissertation with regard to modeling is to develop a software tool to support the formal modeling capabilities in this framework. For analysis, this framework combines three complementary techniques, simulation, explicit state model checking and bounded model checking (BMC). Simulation is a straightforward and speedy method, but only covers some execution paths in a HLPN model. Explicit state model checking covers all the execution paths but suffers from the state explosion problem. BMC is a tradeoff as it provides a certain level of coverage while more efficient than explicit state model checking. The main contribution of this dissertation with regard to analysis is adapting BMC to analyze HLPN models and integrating the three complementary analysis techniques in a software tool to support the formal analysis capabilities in this framework. The SAMTools developed for this framework in this dissertation integrates three tools: PIPE+ for HLPNs behavioral modeling and simulation, SAMAT for hierarchical structural modeling and property specification, and PIPE+Verifier for behavioral verification.
Resumo:
The ultimate intent of this dissertation was to broaden and strengthen our understanding of IT implementation by emphasizing research efforts on the dynamic nature of the implementation process. More specifically, efforts were directed toward opening the "black box" and providing the story that explains how and why contextual conditions and implementation tactics interact to produce project outcomes. In pursuit of this objective, the dissertation was aimed at theory building and adopted a case study methodology combining qualitative and quantitative evidence. Precisely, it examined the implementation process, use and consequences of three clinical information systems at Jackson Memorial Hospital, a large tertiary care teaching hospital.^ As a preliminary step toward the development of a more realistic model of system implementation, the study proposes a new set of research propositions reflecting the dynamic nature of the implementation process.^ Findings clearly reveal that successful implementation projects are likely to be those where key actors envision end goals, anticipate challenges ahead, and recognize the presence of and seize opportunities. It was also found that IT implementation is characterized by the systems theory of equifinality, that is, there are likely several equally effective ways to achieve a given end goal. The selection of a particular implementation strategy appears to be a rational process where actions and decisions are largely influenced by the degree to which key actors recognize the mediating role of each tactic and are motivated to action. The nature of the implementation process is also characterized by the concept of "duality of structure," that is, context and actions mutually influence each other. Another key finding suggests that there is no underlying program that regulates the process of change and moves it form one given point toward a subsequent and already prefigured end. For this reason, the implementation process cannot be thought of as a series of activities performed in a sequential manner such as conceived in stage models. Finally, it was found that IT implementation is punctuated by a certain indeterminacy. Results suggest that only when substantial efforts are focused on what to look for and think about, it is less likely that unfavorable and undesirable consequences will occur. ^
Resumo:
It has been well documented that traffic accidents that can be avoided occur when the motorists miss or ignore traffic signs. With the attention of drivers getting diverted due to distractions like cell phone conversations, missing traffic signs has become more prevalent. Also, poor weather and other unfriendly driving conditions sometimes makes the motorists not to be alert all the time and see every traffic sign on the road. Besides, most cars do not have any form of traffic assistance. Because of heavy traffic and proliferation of traffic signs on the roads, there is a need for a system that assists the driver not to miss a traffic sign to reduce the probability of an accident. Since visual information is critical for driving, processed video signals from cameras have been chosen to assist drivers. These inexpensive cameras can be easily mounted on the automobile. The objective of the present investigation and the traffic system development is to recognize the traffic signs electronically and alert drivers. For the case study and the system development, five important and critical traffic signs have been selected. They are: STOP, NO ENTER, NO RIGHT TURN, NO LEFT TURN, and YIELD. The system was evaluated processing still pictures taken from the public roads, and the recognition results were presented in an analysis table to indicate the correct identifications and the false ones. The system reached the acceptable recognition rate of 80% for all five traffic signs. The processing rate was about three seconds. The capabilities of MATLAB, VLSI design platforms and coding have been used to generate a visual warning to complement the visual driver support system with a Field Programmable Gate Array (FPGA) on a XUP Virtex-II Pro Development System.
Resumo:
The convergence of data, audio and video on IP networks is changing the way individuals, groups and organizations communicate. This diversity of communication media presents opportunities for creating synergistic collaborative communications. This form of collaborative communication is however not without its challenges. The increasing number of communication service providers coupled with a combinatorial mix of offered services, varying Quality-of-Service and oscillating pricing of services increases the complexity for the user to manage and maintain ‘always best’ priced or performance services. Consumers have to manually manage and adapt their communication in line with differences in services across devices, networks and media while ensuring that the usage remain consistent with their intended goals. This dissertation proposes a novel user-centric approach to address this problem. The proposed approach aims to reduce the aforementioned complexity to the user by (1) providing high-level abstractions and a policy based methodology for automated selection of the communication services guided by high-level user policies and (2) providing services through the seamless integration of multiple communication service providers and providing an extensible framework to support the integration of multiple communication service providers. The approach was implemented in the Communication Virtual Machine (CVM), a model-driven technology for realizing communication applications. The CVM includes the Network Communication Broker, the layer responsible for providing a network-independent API to the upper layers of CVM. The initial prototype for the NCB supported only a single communication framework which limited the number, quality and types of services available. Experimental evaluation of the approach show the additional overhead of the approach is minimal compared to the individual communication services frameworks. Additionally the automated approach proposed out performed the individual communication services frameworks for cross framework switching.
Resumo:
Recent intervention efforts in promoting positive identity in troubled adolescents have begun to draw on the potential for an integration of the self-construction and self-discovery perspectives in conceptualizing identity processes, as well as the integration of quantitative and qualitative data analytic strategies. This study reports an investigation of the Changing Lives Program (CLP), using an Outcome Mediation (OM) evaluation model, an integrated model for evaluating targets of intervention, while theoretically including a Self-Transformative Model of Identity Development (STM), a proposed integration of self-discovery and self-construction identity processes. This study also used a Relational Data Analysis (RDA) integration of quantitative and qualitative analysis strategies and a structural equation modeling approach (SEM), to construct and evaluate the hypothesized OM/STM model. The CLP is a community supported positive youth development intervention, targeting multi-problem youth in alternative high schools in the Miami Dade County Public Schools (M-DCPS). The 259 participants for this study were drawn from the CLP’s archival data file. The model evaluated in this study utilized three indices of core identity processes (1) personal expressiveness, (2) identity conflict resolution, and (3) informational identity style that were conceptualized as mediators of the effects of participation in the CLP on change in two qualitative outcome indices of participants’ sense of self and identity. Findings indicated the model fit the data (χ2 (10) = 3.638, p = .96; RMSEA = .00; CFI = 1.00; WRMR = .299). The pattern of findings supported the utilization of the STM in conceptualizing identity processes and provided support for the OM design. The findings also suggested the need for methods capable of detecting and rendering unique sample specific free response data to increase the likelihood of identifying emergent core developmental research concepts and constructs in studies of intervention/developmental change over time in ways not possible using fixed response methods alone.
Resumo:
Voice communication systems such as Voice-over IP (VoIP), Public Switched Telephone Networks, and Mobile Telephone Networks, are an integral means of human tele-interaction. These systems pose distinctive challenges due to their unique characteristics such as low volume, burstiness and stringent delay/loss requirements across heterogeneous underlying network technologies. Effective quality evaluation methodologies are important for system development and refinement, particularly by adopting user feedback based measurement. Presently, most of the evaluation models are system-centric (Quality of Service or QoS-based), which questioned us to explore a user-centric (Quality of Experience or QoE-based) approach as a step towards the human-centric paradigm of system design. We research an affect-based QoE evaluation framework which attempts to capture users' perception while they are engaged in voice communication. Our modular approach consists of feature extraction from multiple information sources including various affective cues and different classification procedures such as Support Vector Machines (SVM) and k-Nearest Neighbor (kNN). The experimental study is illustrated in depth with detailed analysis of results. The evidences collected provide the potential feasibility of our approach for QoE evaluation and suggest the consideration of human affective attributes in modeling user experience.
Resumo:
The tidal influence on the Big Pine Key saltwater/freshwater interface was analyzed using time-lapse electrical resistivity imaging and shallow well measurements. The transition zone at the saltwater/freshwater interface was measured over part of a tidal cycle along three profiles. The resistivity was converted to salinity by deriving a formation factor for the Miami Oolite. A SEAWAT model was created to attempt to recreate the field measurements and test previously established hydrogeologic parameters. The results imply that the tide only affects the groundwater within 20 to 30 m of the coast. The effect is small and caused by flooding from the high tide. The low relief of the island means this effect is very sensitive to small changes in the magnitude. The SEAWAT model proved to be insufficient in modeling this effect. The study suggests that the extent of flooding is the largest influence on the salinity of the groundwater.