4 resultados para mimicked precipitation

em Digital Commons at Florida International University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present 8 yr of long-term water quality, climatological, and water management data for 17 locations in Everglades National Park, Florida. Total phosphorus (P) concentration data from freshwater sites (typically ,0.25 mmol L21, or 8 mg L21) indicate the oligotrophic, P-limited nature of this large freshwater–estuarine landscape. Total P concentrations at estuarine sites near the Gulf of Mexico (average ø0.5 m mol L21) demonstrate the marine source for this limiting nutrient. This ‘‘upside down’’ phenomenon, with the limiting nutrient supplied by the ocean and not the land, is a defining characteristic of the Everglade landscape. We present a conceptual model of how the seasonality of precipitation and the management of canal water inputs control the marine P supply, and we hypothesize that seasonal variability in water residence time controls water quality through internal biogeochemical processing. Low freshwater inflows during the dry season increase estuarine residence times, enabling local processes to control nutrient availability and water quality. El Nin˜o–Southern Oscillation (ENSO) events tend to mute the seasonality of rainfall without altering total annual precipitation inputs. The Nin˜o3 ENSO index (which indicates an ENSO event when positive and a La Nin˜a event when negative) was positively correlated with both annual rainfall and the ratio of dry season to wet season precipitation. This ENSO-driven disruption in seasonal rainfall patterns affected salinity patterns and tended to reduce marine inputs of P to Everglades estuaries. ENSO events also decreased dry season residence times, reducing the importance of estuarine nutrient processing. The combination of variable water management activities and interannual differences in precipitation patterns has a strong influence on nutrient and salinity patterns in Everglades estuaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precipitation data collected from five sites in south Florida indicate a strong seasonal and spatial variation in δ18O and δD, despite the relatively limited geographic coverage and low-lying elevation of each of the collection sites. Based upon the weighted-mean stable isotope values, the sites were classified as coastal Atlantic, inland, and lower Florida Keys. The coastal Atlantic sites had weighted-mean values of δ18O and δD of −2.86‰ and −12.8‰, respectively, and exhibited a seasonal variation with lower δ18O and δD values in the summer wet-season precipitation (δ18O = −3.38‰, δD = −16.5‰) as compared to the winter-time precipitation (δ18O = −1.66‰, δD = −3.2‰). The inland site was characterized as having the highest d-excess value (+13.3‰), signifying a contribution of evaporated Everglades surface water to the local atmospheric moisture. In spite of its lower latitude, the lower Keys site located at Long Key had the lowest weighted-mean stable isotope values (δ18O = −3.64‰, δD = −20.2‰) as well as the lowest d-excess value of (+8.8‰). The lower δD and δ18O values observed at the Long Key site reflect the combined effects of oceanic vapor source, fractionation due to local precipitation, and slower equilibration of the larger raindrops nucleated by a maritime aerosol. Very low δ18O and δD values (δ18O < −6‰, δD < −40‰) were observed just prior to the passage of hurricanes from the Gulf of Mexico as well as during cold fronts from the north-west. These results suggest that an oceanic vapor source region to the west, may be responsible for the extremely low δD and δ18O values observed during some tropical storms and cold fronts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precipitation and temperature in Florida responds to climate teleconnections from both the Pacific and Atlantic regions. In this region south of Lake Okeechobee, encompassing NWS Climate Divisions 5, 6, and 7, modern movement of surface waters are managed by the South Florida Water Management District and the US Army Corps of Engineers for flood control, water supply, and Everglades restoration within the constraints of the climatic variability of precipitation and evaporation. Despite relatively narrow, low-relief, but multi-purposed land separating the Atlantic Ocean from the Gulf of Mexico, South Florida has patterns of precipitation and temperature that vary substantially on spatial scales of 101–102 km. Here we explore statistically significant linkages to precipitation and temperature that vary seasonally and over small spatial scales with El Niño-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), and the Pacific Decadal Oscillation (PDO). Over the period from 1952 to 2005, ENSO teleconnections exhibited the strongest influence on seasonal precipitation. The Multivariate ENSO Index was positively correlated with winter (dry season) precipitation and explained up to 34 % of dry season precipitation variability along the southwest Florida coast. The AMO was the most influential of these teleconnections during the summer (wet season), with significant positive correlations to South Florida precipitation. These relationships with modern climate parameters have implications for paleoclimatological and paleoecological reconstructions, and future climate predictions from the Greater Everglades system.