7 resultados para medicinal plants
em Digital Commons at Florida International University
Resumo:
Twelve plants used medicinally in Callejon de Huaylas, Department of Ancash, northeastern Peru were selected and screened in vitro for cytotoxic and cytostatic activities. Traditional preparations, aqueous extracts and organic extracts (methanol:dimethyl chloride) were tested against murine leukemia P388 cells using flow cytometry. Seventy-five percent or more of the traditional and aqueous extracts were cytostatic at concentrations of 1mg/ml. For organic extracts, cytostatic activity ranged from 8.3% (at 6.25 μg/ml) to 58.3% (at 100 μg/ml). Quinchamalium procumbens, Ophryosporus chilca and Baccharis genistelloides showed strong activity. Extracts of Brachyotum rostratum, Monnina salicifolia, and Orthrosanthus chimboracensis were particularly interesting, since they were cytostatic but not cytotoxic at concentrations of 0.5 mg/ml. These Andean plants merit further analysis. The high percentage of activity found among the traditional preparations suggests that the traditional medical knowledge of Callejon de Huaylas healers deserves respect and merits further research. ^
Resumo:
With the difficulty in treating recalcitrant infections and the growing resistance to antibiotics, new therapeutic modalities are becoming increasingly necessary. The interruption of bacterial quorum sensing (QS), or cell-cell communication is known to attenuate virulence, while limiting selective pressure toward resistance. This study initiates an ethnobotanically-directed search for QS inhibiting agents in south Florida medicinal plants. Fifty plants were screened for anti-QS activity using two biomonitor strains, Chromobacterium violaceum and Agrobacterium tumefaciens. Of these plants, six showed QS inhibition: Conocarpus erectus L. (Combretaceae), Chamaecyce hypericifolia (L.) Millsp. (Euphorbiaceae), Callistemon viminalis (Sol.ex Gaertn.) G. Don (Myrtaceae), Bucida burceras L. (Combretaceae), Tetrazygia bicolor (Mill.) Cogn. (Melastomataceae), and Quercus virginiana Mill. (Fagaceae). These plants were further examined for their effects on the QS system and virulence of Pseudomonas aeruginosa, an intractable opportunistic pathogen responsible for morbidity and mortality in the immunocompromised patient. C. erectus, B. buceras, and C. viminalis were found to significantly inhibit multiple virulence factors and biofilm formation in this organism. Each plant presented a distinct profile of effect on QS genes and signaling molecules, suggesting varying modes of action. Virulence attenuation was observed with marginal reduction of bacterial growth, suggesting quorum quenching mechanisms unrelated to static or cidal effects. Extracts of these plants were also investigated for their effects on P. aeruginosa killing of the nematode Caenorhabditis elegans. Results were evaluated in both toxin-based and infection-based assays with P. aeruginosa strains PA01 and PA14. Overall nematode mortality was reduced 50-90%. There was no indication of host toxicity, suggesting the potential for further development as anti-infectives. Using low-pressure chromatography and HPLC, two stereoisomeric ellagitannins, vescalagin and castalagin were isolated from an aqueous extract of C. erectus . Structures were confirmed via mass spectrometry and NMR spectroscopy. Both ellagitannins were shown to decrease signal production, QS gene expression, and virulence factor production in P. aeruginosa. This study introduces a potentially new therapeutic direction for the treatment of bacterial infections. In addition, this is the first report of vescalagin and castalagin being isolated from C. erectus, and the first report of ellagitannin activity on the QS system.
Resumo:
With the difficulty in treating recalcitrant infections and the growing resistance to antibiotics, new therapeutic modalities are becoming increasingly necessary. The interruption of bacterial quorum sensing (QS), or cell-cell communication is known to attenuate virulence, while limiting selective pressure toward resistance. This study initiates an ethnobotanically-directed search for QS inhibiting agents in south Florida medicinal plants. Fifty plants were screened for anti-QS activity using two biomonitor strains, Chromobacterium violaceum and Agrobacterium tumefaciens. Of these plants, six showed QS inhibition: Conocarpus erectus L. (Combretaceae), Chamaecyce hypericifolia (L.) Millsp. (Euphorbiaceae), Callistemon viminalis (Sol.ex Gaertn.) G. Don (Myrtaceae), Bucida burceras L. (Combretaceae), Tetrazygia bicolor (Mill.) Cogn. (Melastomataceae), and Quercus virginiana Mill. (Fagaceae). These plants were further examined for their effects on the QS system and virulence of Pseudomonas aeruginosa, an intractable opportunistic pathogen responsible for morbidity and mortality in the immunocompromised patient. C. erectus, B. buceras, and C. viminalis were found to significantly inhibit multiple virulence factors and biofilm formation in this organism. Each plant presented a distinct profile of effect on QS genes and signaling molecules, suggesting varying modes of action. Virulence attenuation was observed with marginal reduction of bacterial growth, suggesting quorum quenching mechanisms unrelated to static or cidal effects. Extracts of these plants were also investigated for their effects on P. aeruginosa killing of the nematode Caenorhabditis elegans. Results were evaluated in both toxin-based and infection-based assays with P. aeruginosa strains PA01 and PA14. Overall nematode mortality was reduced 50-90%. There was no indication of host toxicity, suggesting the potential for further development as anti-infectives. Using low-pressure chromatography and HPLC, two stereoisomeric ellagitannins, vescalagin and castalagin were isolated from an aqueous extract of C. erectus. Structures were confirmed via mass spectrometry and NMR spectroscopy. Both ellagitannins were shown to decrease signal production, QS gene expression, and virulence factor production in P. aeruginosa. This study introduces a potentially new therapeutic direction for the treatment of bacterial infections. In addition, this is the first report of vescalagin and castalagin being isolated from C. erectus, and the first report of ellagitannin activity on the QS system.
Resumo:
Most ethnopharmacological studies overlook food plants, yet many edible plants, also have medicinal value. I documented plants that are used as both food and medicine by the Totonac of Zapotitlan de Mendez, Mexico and recorded the presence of selected secondary compounds, and physical characteristics in these plants. Photoactivity, antimicrobial, and antifungal assays also were performed. The presence of these properties were compared among food/medicine plants, food, medicinal, and randomly selected plants. I predicted that a higher percentage of medicinal plants would contain the secondary compounds, physical characteristics, and bioactivity compared to the other groups. Phenolics and cyanogenic glycosides in the medicinal group were significantly greater than in the food/medicine group. The food plants did not differ greatly from the medicinal plants. This research indicates that including food plants in ethnomedical studies could provide a more complete knowledge of peoples therapeutic resources and practices. ^
Resumo:
One-third of botanical remedies from southern Italy are used to treat skin and soft tissue infections (SST's). Methicillin-resistant Staphylococcus aureus (MRSA), a common cause of SSTIs, is responsible for increased morbidity and mortality from infections. Therapeutic options are limited by antibiotic resistance. Many plants possess potent antimicrobial compounds for these disorders. Validation of traditional medical practices is important for the people who rely on medicinal plants. Moreover, identification of novel antibiotics and anti-pathogenic agents for MRSA is important to global healthcare.^ I took an ethnopharmacological approach to understand how Italian medicinal plants used for the treatment of SSTIs affect MRSA growth and virulence. My hypothesis was that plants used in folk remedies for SSTI would exhibit lower cytotoxicity and greater inhibition of bacterial growth, biofilm formation and toxin production in MRSA than plants used for remedies unrelated to the skin or for plants with no ethnomedical application. The field portion of my research was conducted in the Vulture-Alto Bradano area of southern Italy. I collected 104 plant species and created 168 crude extracts. In the lab, I screened samples for activity against MRSA in a battery of bioassays. Growth inhibition was analyzed using broth microtiter assays for determination of the minimum inhibitory concentration. Interference with quorum-sensing (QS) processes, which mediate pathogenicity, was quantified through RP-HPLC of δ-toxin production. Interference with biofilm formation and adherence was assessed using staining methods. The mammalian cytotoxicity of natural products was analyzed using MTT cell proliferation assay techniques.^ Although bacteriostatic activity was limited, extracts from six plants used in Italian folk medicine (Arundo donax, Ballota nigra, Juglans regia, Leopoldia comosa, Marrubium vulgare, and Rubus ulmifolius ) significantly inhibited biofilm formation and adherence. Moreover, plants used to treat SSTI demonstrated significantly greater anti-biofilm activity when compared to plants with no ethnomedical application. QSI activity was evident in 90% of the extracts tested and extracts from four plants ( Ballota nigra, Castanea saliva, Rosmarinus officinalis, and Sambucus ebulus) exhibited a significant dose-dependent response. Some of the plant remedies for SSTI identified in this study can be validated due to anti-MRSA activity.^
Resumo:
Diminishing cultural and biological diversity is a current global crisis. Tropical forests and indigenous peoples are adversely affected by social and environmental changes caused by global political and economic systems. The purpose of this thesis was to investigate environmental and livelihood challenges as well as medicinal plant knowledge in a Yagua village in the Peruvian Amazon. Indigenous peoples’ relationships with the environment is an important topic in environmental anthropology, and traditional botanical knowledge is an integral component of ethnobotany. Political ecology provides a useful theoretical perspective for understanding the economic and political dimensions of environmental and social conditions. This research utilized a variety of ethnographic, ethnobotanical, and community-involved methods. Findings include data and analyses about the community’s culture, subsistence and natural resource needs, organizations and institutions, and medicinal plant use. The conclusion discusses the case study in terms of the disciplinary framework and offers suggestions for research and application.
Resumo:
Infectious diarrhea results in 2 to 5 million deaths worldwide per year, and treatments that are safe, effective, and readily available are under investigation. The field of medicinal ethnobotany focuses on plants that are used by different cultural groups for treating various diseases and evaluates these plants for efficacy and cytotoxicity. In the present study, ethnobotanical research was conducted with Central Anatolian villagers in Turkey. Folk concepts and etiologies surrounding diarrhea were analyzed, as were salient plant-based remedies for diarrhea. Reviewing the literature, 91 plant species were described as anti-diarrheal in all of Turkey. In Central Anatolia, villagers described 35 species. For continued research via bactericidal and bacteriostatic bioassays, 15 plants were selected. Methanolic and aqueous extracts of medicinally used plant parts were evaluated for inhibitory properties against 10 diarrhea-causing bacteria in the first bioassay, and later 21 bacteria in a second assay utilizing spectrophotometry. The cytotoxic properties were also evaluated in an Alamar Blue Assay using HepG-2, PC-3, and SkMEL-5 human cell lines. While several extracts showed bactericidal and bacteriostatic properties, the methanolic extract of R. canina galls inhibited the most bacteria at the lowest concentrations. They were not cytotoxic. Thus, R. canina methanolic gall extracts were selected for bio-assay guided fractionation. Antibacterial activity was maintained in the third fraction which was composed of almost pure ellagic acid. The bioassay was repeated with standard ellagic acid, and the polyphenol retained potency in inhibiting multiple bacterial strains. Several other extracts showed promise for safe, effective anti-bacterial remedies for diarrhea.