2 resultados para media production and content
em Digital Commons at Florida International University
Resumo:
From educational, communications, psychological, and technical points of view, the renovation of pedagogy in media education is based upon the promotion of "educational technology." The promotion of educational technology relies upon the appropriate availability and knowledge of different educational media made available by the trained media personnel.^ In the past three decades most of the junior colleges in Taiwan set up educational media centers to help students learn through the use of media which enables them to obtain optimum benefits in a short time. What are the roles the media personnel play in the media center? What responsibilities have they to bear in the center? What differences are there when a trained and untrained media personnel are presented in junior colleges media center in Taiwan? What do the trained and untrained media personnel feel toward the importance of each media service in the area of media center's administration, media production, specialized media duties, and the training of staff in media use? These are the questions addressed in this study.^ Through the study of the related literature and a survey conducted in the junior colleges in Taiwan, recommendations are offered to provide improvement of the services and training of media specialists in Taiwan that are appropriate for a changing work and environment. These recommendations are for media specialists to be formally trained to effectively serve the changing needs of school library media so as to make optimal use of media in the junior colleges. ^
Resumo:
Fossil fuels constitute a significant fraction of the world's energy demand. The burning of fossil fuels emits huge amounts of carbon dioxide into the atmosphere. Therefore, the limited availability of fossil fuel resources and the environmental impact of their use require a change to alternative energy sources or carriers (such as hydrogen) in the foreseeable future. The development of methods to mitigate carbon dioxide emission into the atmosphere is equally important. Hence, extensive research has been carried out on the development of cost-effective technologies for carbon dioxide capture and techniques to establish hydrogen economy. Hydrogen is a clean energy fuel with a very high specific energy content of about 120MJ/kg and an energy density of 10Wh/kg. However, its potential is limited by the lack of environment-friendly production methods and a suitable storage medium. Conventional hydrogen production methods such as Steam-methane-reformation and Coal-gasification were modified by the inclusion of NaOH. The modified methods are thermodynamically more favorable and can be regarded as near-zero emission production routes. Further, suitable catalysts were employed to accelerate the proposed NaOH-assisted reactions and a relation between reaction yield and catalyst size has been established. A 1:1:1 molar mixture of LiAlH 4, NaNH2 and MgH2 were investigated as a potential hydrogen storage medium. The hydrogen desorption mechanism was explored using in-situ XRD and Raman Spectroscopy. Mesoporous metal oxides were assessed for CO2 capture at both power and non-power sectors. A 96.96% of mesoporous MgO (325 mesh size, surface area = 95.08 ± 1.5 m2/g) was converted to MgCO 3 at 350°C and 10 bars CO2. But the absorption capacity of 1h ball milled zinc oxide was low, 0.198 gCO2 /gZnO at 75°C and 10 bars CO2. Interestingly, 57% mass conversion of Fe and Fe 3O4 mixture to FeCO3 was observed at 200°C and 10 bars CO2. MgO, ZnO and Fe3O4 could be completely regenerated at 550°C, 250°C and 350°C respectively. Furthermore, the possible retrofit of MgO and a mixture of Fe and Fe3O 4 to a 300 MWe coal-fired power plant and iron making industry were also evaluated.