4 resultados para mechanical engineering
em Digital Commons at Florida International University
Resumo:
The purpose of this study was to evaluate the mechanical engineering technology curriculum effectiveness at the junior college in Taiwan by using the CIPP evaluation model. The study concerned the areas of the curriculum, curriculum materials, individualized instruction, support services, teaching effectiveness, student achievement, and job performance. A descriptive survey method was used with questionnaires for data collection from faculty, students, graduates, and employers.^ All categories of respondents tended to agree that the curriculum provides appropriate occupational knowledge and skills. Students, graduates, and faculty tended to be satisfied with the curriculum; faculty tended to be satisfied with student achievement; graduates tended to be satisfied with their job preparation; and employers were most satisfied with graduates' job performance.^ Conclusions were drawn in the context, input, process, and product of the CIPP model. In Context area: Students were dissatisfied with curriculum flexibility in students characteristics. Graduates were dissatisfied with curriculum design for student's adaptability in new economic and industrial conditions; practicum flexibility in student characteristics; and course overlap. Both students and graduates were dissatisfied with practicum credit hours. Both faculty and students were dissatisfied with the number of required courses.^ In Input area: Students, faculty, and graduates perceived audiovisuals and manipulative aids positively. Faculty and students perceive CAI implementation positively. Students perceived textbooks negatively.^ In Process area: Faculty, students, and graduates perceived all support service negatively. Faculty tended to perceive the ratios of graduates who enter advanced study and related occupation, and who passed the professional skills certification, negatively. Students tended to perceive teaching effectiveness in terms of instructional strategies, the quality of instruction, overall suitability, and receivable, negatively. Graduates also tended to identify the instructional strategies as a negative perception. Faculty and students perceived curriculum objectives and practicum negatively. Both faculty and students felt that instructors should be more interested in making the courses a useful learning experience.^ In Product area: Employers were satisfied with graduates' academic preparation and job performance, adaptability, punctuality, and their ability to communicate, cooperate, and meet organization needs. Graduates were weak in terms of equipment familiarity and supervisory ability.^ In sum, the curriculum of the five-year mechanical engineering technology programs of junior college in Taiwan has served adequately up to this time in preparing a work force to enter industry. It is now time to look toward the future and adapt the curriculum and instruction for the future needs of this high-tech society. ^
Resumo:
Taiwan's technological five-year junior college (TFYJC) was founded in 1948 to train technicians to meet the demand coming from national construction. Site level professionals never were trained in curriculum development as this was under strict national control. The purpose of this study is to present an accurate narrative of Taiwan's TFYJC mechanical engineering curriculum development history in order to display the focus, rationale, and influencing forces of the evolving curriculum. This study employed historical research methodology and used document analysis as the primary approach.^ This analysis revealed that the target FYJC curriculum was manufacturing-oriented. The range of government control shifted from little, to full, then to partial control of the curriculum, from autonomy to uniformity then to partial autonomy. The intention of the target curriculum development was always to advance domestic economic development. Voices from the academia and government also influenced curriculum development decisions. Currently, the government has instituted a shift in focus and content causing individual institutions to develop curriculum responses addressing the challenge of advancing Taiwan's position in a global economy.^ Considering the shift in policy and practice, individual institutions intending to design curriculum are advised to implement empirical needs assessments of students, graduates, and employers and to engage in critical studies of emerging resources in order to provide effective in service training. To accomplish this end, TFYJC faculty and administration need training in curriculum theory and practice and evaluation. ^
Resumo:
Carbon nanotubes (CNT) could serve as potential reinforcement for metal matrix composites for improved mechanical properties. However dispersion of carbon nanotubes (CNT) in the matrix has been a longstanding problem, since they tend to form clusters to minimize their surface area. The aim of this study was to use plasma and cold spraying techniques to synthesize CNT reinforced aluminum composite with improved dispersion and to quantify the degree of CNT dispersion as it influences the mechanical properties. Novel method of spray drying was used to disperse CNTs in Al-12 wt.% Si prealloyed powder, which was used as feedstock for plasma and cold spraying. A new method for quantification of CNT distribution was developed. Two parameters for CNT dispersion quantification, namely Dispersion parameter (DP) and Clustering Parameter (CP) have been proposed based on the image analysis and distance between the centers of CNTs. Nanomechanical properties were correlated with the dispersion of CNTs in the microstructure. Coating microstructure evolution has been discussed in terms of splat formation, deformation and damage of CNTs and CNT/matrix interface. Effect of Si and CNT content on the reaction at CNT/matrix interface was thermodynamically and kinetically studied. A pseudo phase diagram was computed which predicts the interfacial carbide for reaction between CNT and Al-Si alloy at processing temperature. Kinetic aspects showed that Al4C3 forms with Al-12 wt.% Si alloy while SiC forms with Al-23wt.% Si alloy. Mechanical properties at nano, micro and macro-scale were evaluated using nanoindentation and nanoscratch, microindentation and bulk tensile testing respectively. Nano and micro-scale mechanical properties (elastic modulus, hardness and yield strength) displayed improvement whereas macro-scale mechanical properties were poor. The inversion of the mechanical properties at different scale length was attributed to the porosity, CNT clustering, CNT-splat adhesion and Al 4C3 formation at the CNT/matrix interface. The Dispersion parameter (DP) was more sensitive than Clustering parameter (CP) in measuring degree of CNT distribution in the matrix.
Resumo:
Plasma sprayed aluminum oxide ceramic coating is widely used due to its outstanding wear, corrosion, and thermal shock resistance. But porosity is the integral feature in the plasma sprayed coating which exponentially degrades its properties. In this study, process maps were developed to obtain Al2O3-CNT composite coatings with the highest density (i.e. lowest porosity) and improved mechanical and wear properties. Process map is defined as a set of relationships that correlates large number of plasma processing parameters to the coating properties. Carbon nanotubes (CNTs) were added as reinforcement to Al2O 3 coating to improve the fracture toughness and wear resistance. Two novel powder processing approaches viz spray drying and chemical vapor growth were adopted to disperse CNTs in Al2O3 powder. The degree of CNT dispersion via chemical vapor deposition (CVD) was superior to spray drying but CVD could not synthesize powder in large amount. Hence optimization of plasma processing parameters and process map development was limited to spray dried Al2O3 powder containing 0, 4 and 8 wt. % CNTs. An empirical model using Pareto diagram was developed to link plasma processing parameters with the porosity of coating. Splat morphology as a function of plasma processing parameter was also studied to understand its effect on mechanical properties. Addition of a mere 1.5 wt. % CNTs via CVD technique showed ∼27% and ∼24% increase in the elastic modulus and fracture toughness respectively. Improved toughness was attributed to combined effect of lower porosity and uniform dispersion of CNTs which promoted the toughening by CNT bridging, crack deflection and strong CNT/Al2O3 interface. Al2O 3-8 wt. % CNT coating synthesized using spray dried powder showed 73% improvement in the fracture toughness when porosity reduced from 4.7% to 3.0%. Wear resistance of all coatings at room and elevated temperatures (573 K, 873 K) showed improvement with CNT addition and decreased porosity. Such behavior was due to improved mechanical properties, protective film formation due to tribochemical reaction, and CNT bridging between the splats. Finally, process maps correlating porosity content, CNT content, mechanical properties, and wear properties were developed.