2 resultados para mathematical functions

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation introduces an integrated algorithm for a new application dedicated at discriminating between electrodes leading to a seizure onset and those that do not, using interictal subdural EEG data. The significance of this study is in determining among all of these channels, all containing interictal spikes, why some electrodes eventually lead to seizure while others do not. A first finding in the development process of the algorithm is that these interictal spikes had to be asynchronous and should be located in different regions of the brain, before any consequential interpretations of EEG behavioral patterns are possible. A singular merit of the proposed approach is that even when the EEG data is randomly selected (independent of the onset of seizure), we are able to classify those channels that lead to seizure from those that do not. It is also revealed that the region of ictal activity does not necessarily evolve from the tissue located at the channels that present interictal activity, as commonly believed.^ The study is also significant in terms of correlating clinical features of EEG with the patient's source of ictal activity, which is coming from a specific subset of channels that present interictal activity. The contributions of this dissertation emanate from (a) the choice made on the discriminating parameters used in the implementation, (b) the unique feature space that was used to optimize the delineation process of these two type of electrodes, (c) the development of back-propagation neural network that automated the decision making process, and (d) the establishment of mathematical functions that elicited the reasons for this delineation process. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crash reduction factors (CRFs) are used to estimate the potential number of traffic crashes expected to be prevented from investment in safety improvement projects. The method used to develop CRFs in Florida has been based on the commonly used before-and-after approach. This approach suffers from a widely recognized problem known as regression-to-the-mean (RTM). The Empirical Bayes (EB) method has been introduced as a means to addressing the RTM problem. This method requires the information from both the treatment and reference sites in order to predict the expected number of crashes had the safety improvement projects at the treatment sites not been implemented. The information from the reference sites is estimated from a safety performance function (SPF), which is a mathematical relationship that links crashes to traffic exposure. The objective of this dissertation was to develop the SPFs for different functional classes of the Florida State Highway System. Crash data from years 2001 through 2003 along with traffic and geometric data were used in the SPF model development. SPFs for both rural and urban roadway categories were developed. The modeling data used were based on one-mile segments that contain homogeneous traffic and geometric conditions within each segment. Segments involving intersections were excluded. The scatter plots of data show that the relationships between crashes and traffic exposure are nonlinear, that crashes increase with traffic exposure in an increasing rate. Four regression models, namely, Poisson (PRM), Negative Binomial (NBRM), zero-inflated Poisson (ZIP), and zero-inflated Negative Binomial (ZINB), were fitted to the one-mile segment records for individual roadway categories. The best model was selected for each category based on a combination of the Likelihood Ratio test, the Vuong statistical test, and the Akaike's Information Criterion (AIC). The NBRM model was found to be appropriate for only one category and the ZINB model was found to be more appropriate for six other categories. The overall results show that the Negative Binomial distribution model generally provides a better fit for the data than the Poisson distribution model. In addition, the ZINB model was found to give the best fit when the count data exhibit excess zeros and over-dispersion for most of the roadway categories. While model validation shows that most data points fall within the 95% prediction intervals of the models developed, the Pearson goodness-of-fit measure does not show statistical significance. This is expected as traffic volume is only one of the many factors contributing to the overall crash experience, and that the SPFs are to be applied in conjunction with Accident Modification Factors (AMFs) to further account for the safety impacts of major geometric features before arriving at the final crash prediction. However, with improved traffic and crash data quality, the crash prediction power of SPF models may be further improved.