13 resultados para make energy use more effective
em Digital Commons at Florida International University
Resumo:
As traffic congestion exuberates and new roadway construction is severely constrained because of limited availability of land, high cost of land acquisition, and communities' opposition to the building of major roads, new solutions have to be sought to either make roadway use more efficient or reduce travel demand. There is a general agreement that travel demand is affected by land use patterns. However, traditional aggregate four-step models, which are the prevailing modeling approach presently, assume that traffic condition will not affect people's decision on whether to make a trip or not when trip generation is estimated. Existing survey data indicate, however, that differences exist in trip rates for different geographic areas. The reasons for such differences have not been carefully studied, and the success of quantifying the influence of land use on travel demand beyond employment, households, and their characteristics has been limited to be useful to the traditional four-step models. There may be a number of reasons, such as that the representation of influence of land use on travel demand is aggregated and is not explicit and that land use variables such as density and mix and accessibility as measured by travel time and congestion have not been adequately considered. This research employs the artificial neural network technique to investigate the potential effects of land use and accessibility on trip productions. Sixty two variables that may potentially influence trip production are studied. These variables include demographic, socioeconomic, land use and accessibility variables. Different architectures of ANN models are tested. Sensitivity analysis of the models shows that land use does have an effect on trip production, so does traffic condition. The ANN models are compared with linear regression models and cross-classification models using the same data. The results show that ANN models are better than the linear regression models and cross-classification models in terms of RMSE. Future work may focus on finding a representation of traffic condition with existing network data and population data which might be available when the variables are needed to in prediction.
Resumo:
E=MC³ Energy Equals Management's Continued Cost Concern, is an essay written by Fritz G. Hagenmeyer, Associate Professor, School of Hospitality Management at Florida International University. In the writing, Hagenmeyer initially tenders: “Energy problems in the hospitality industry can be contained or reduced, yielding elevated profits as a result of applied, quality management principles. The concepts, processes and procedures presented in this article are intended to aid present and future managers to become more effective with a sharpened focus on profitability.” This article is an overview of energy efficiency and the management of such. In an expanding energy consumption market with its escalating costs, energy management has become an ever increasing concern and component of responsible hospitality management, Hagenmeyer will have you know. “In endeavoring to "manage" on a day-to-day basis a functioning hospitality building's energy system, the person in charge must take on the role of Justice with her scales, attempting to balance the often varying comfort needs of guests and occupants with the invariable rising costs of energy utilized to generate and maintain such comfort conditions, since comfort is seen as an integral part of the "service," "product," or "price/value” perception of patrons,” says Hagenmeyer. In contrast to what was thought in the mid point of this century - that energy would be abundant and cheap - the reality has set-in that this is not the case; not by a long shot. The author wants you to be aware that energy costs in buildings are a force to be reckoned with; a major expense to be sure. “Since 1973, "energy-conscious design" has begun to become part of the repertoire of architects, design engineers, and construction companies,” Hagenmeyer states. “For instance, whereas office buildings of the early 1970s might have used 400,000 British Thermal Units (BTUs) per square foot year, new buildings are going up that use 55,000 to 65,000 BTUs per square foot year,” Hagenmeyer, like an incandescent bulb, illuminates you. Hagenmeyer references Robert E. Aulbach’s article - Energy Management – when informing you that the hospitality manager should not become complacent in addressing the energy cost issue, but should and must maintain a diligent focus on the problem. Hagenmeyer also makes reference to the Middle East War and to OPEC, and their influence on energy prices. In closing, Hagenmeyer suggests an - Energy Management Action Plan – which he outlines for you.
Resumo:
It has long been known that vocabulary is essential in the development of reading. Because vocabulary leading to increased comprehension is important, it necessary to determine strategies for ensuring that the best methods of teaching vocabulary are used to help students make gains in vocabulary leading to reading comprehension. According to the National Reading Panel, multiple strategies that involve active engagement on the part of the student are more effective than the use of just one strategy. The purpose of this study was to determine if students' use of visualization, student-generated pictures of onset-and-rime-patterned vocabulary, and story read-alouds with discussion, would enable diverse first-grade students to increase their vocabulary and comprehension. In addition, this study examined the effect of the multimodal framework of strategies on English learners (ELs). This quasi-experimental study (N=69) was conducted in four first-grade classrooms in a low socio-economic school. Two treatment classes used a multimodal framework of strategies to learn weekly vocabulary words and comprehension. Two comparison classrooms used the traditional method of teaching weekly vocabulary and comprehension. Data sources included Florida Assessments for Instruction in Reading (FAIR), comprehension and vocabulary scores, and weekly MacMillan/McGraw Hill Treasures basal comprehension questions and onset-and-rime vocabulary questions. This research determined that the treatment had an effect in adjusted FAIR comprehension means by group, with the treatment group (adj M = 5.14) significantly higher than the comparison group ( adj M = -8.26) on post scores. However, the treatment means did not increase from pre to post, but the comparison means significantly decreased from pre to post as the materials became more challenging. For the FAIR vocabulary, there was a significant difference by group with the comparison adjusted post mean higher than the treatment's, although both groups significantly increased from pre to post. However, the FAIR vocabulary posttest was not part of the Treasures vocabulary, which was taught using the multimodal framework of strategies. The Treasures vocabulary scores were not significantly different by group on the assessment across the weeks, although the treatment means were higher than those of the comparison group. Continued research is needed in the area of vocabulary and comprehension instructional methods in order to determine strategies to increase diverse, urban students' performance.
Resumo:
The phenomenonal growth of the Internet has connected us to a vast amount of computation and information resources around the world. However, making use of these resources is difficult due to the unparalleled massiveness, high communication latency, share-nothing architecture and unreliable connection of the Internet. In this dissertation, we present a distributed software agent approach, which brings a new distributed problem-solving paradigm to the Internet computing researches with enhanced client-server scheme, inherent scalability and heterogeneity. Our study discusses the role of a distributed software agent in Internet computing and classifies it into three major categories by the objects it interacts with: computation agent, information agent and interface agent. The discussion of the problem domain and the deployment of the computation agent and the information agent are presented with the analysis, design and implementation of the experimental systems in high performance Internet computing and in scalable Web searching. ^ In the computation agent study, high performance Internet computing can be achieved with our proposed Java massive computation agent (JAM) model. We analyzed the JAM computing scheme and built a brutal force cipher text decryption prototype. In the information agent study, we discuss the scalability problem of the existing Web search engines and designed the approach of Web searching with distributed collaborative index agent. This approach can be used for constructing a more accurate, reusable and scalable solution to deal with the growth of the Web and of the information on the Web. ^ Our research reveals that with the deployment of the distributed software agent in Internet computing, we can have a more cost effective approach to make better use of the gigantic scale network of computation and information resources on the Internet. The case studies in our research show that we are now able to solve many practically hard or previously unsolvable problems caused by the inherent difficulties of Internet computing. ^
Resumo:
Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. ^ This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.^
Resumo:
Electrical energy is an essential resource for the modern world. Unfortunately, its price has almost doubled in the last decade. Furthermore, energy production is also currently one of the primary sources of pollution. These concerns are becoming more important in data-centers. As more computational power is required to serve hundreds of millions of users, bigger data-centers are becoming necessary. This results in higher electrical energy consumption. Of all the energy used in data-centers, including power distribution units, lights, and cooling, computer hardware consumes as much as 80%. Consequently, there is opportunity to make data-centers more energy efficient by designing systems with lower energy footprint. Consuming less energy is critical not only in data-centers. It is also important in mobile devices where battery-based energy is a scarce resource. Reducing the energy consumption of these devices will allow them to last longer and re-charge less frequently. Saving energy in computer systems is a challenging problem. Improving a system's energy efficiency usually comes at the cost of compromises in other areas such as performance or reliability. In the case of secondary storage, for example, spinning-down the disks to save energy can incur high latencies if they are accessed while in this state. The challenge is to be able to increase the energy efficiency while keeping the system as reliable and responsive as before. This thesis tackles the problem of improving energy efficiency in existing systems while reducing the impact on performance. First, we propose a new technique to achieve fine grained energy proportionality in multi-disk systems; Second, we design and implement an energy-efficient cache system using flash memory that increases disk idleness to save energy; Finally, we identify and explore solutions for the page fetch-before-update problem in caching systems that can: (a) control better I/O traffic to secondary storage and (b) provide critical performance improvement for energy efficient systems.
Resumo:
The growth of criminal gangs and organized crime groups has created unprecedented challenges in Central America. Homicide rates are among the highest in the world, countries spend on average close to 10 percent of GDP to respond to the challenges of public insecurity, and the security forces are frequently overwhelmed and at times coopted by the criminal groups they are increasingly tasked to counter. With some 90 percent of the 700 metric tons of cocaine trafficked from South America to the United States passing through Central America, the lure of aiding illegal traffickers through provision of arms, intelligence, or simply withholding or delaying the use of force is enormous. These conditions raise the question: to what extent are militaries in Central America compromised by illicit ties to criminal groups? The study focuses on three cases: Nicaragua, El Salvador, and Honduras. It finds that: Although illicit ties between the military and criminal groups have grown in the last decade, militaries in these countries are not yet “lost’ to criminal groups. Supplying criminal groups with light arms from military stocks is typical and on the rise, but still not common. In general the less exposed services, the navies and air forces, are the most reliable and effective ones in their roles in interdiction. Of the three countries in the study, the Honduran military is the most worrying because it is embedded in a context where civilian corruption is extremely common, state institutions are notoriously weak, and the political system remains polarized and lacks the popular legitimacy and political will needed to make necessary reforms. Overall, the armed forces in the three countries remain less compromised than civilian peers, particularly the police. However, in the worsening crime and insecurity context, there is a limited window of opportunity in which to introduce measures targeted toward the military, and such efforts can only succeed if opportunities for corruption in other sectors of the state, in particular in law enforcement and the justice system, are also addressed. Measures targeted toward the military should include: Enhanced material benefits and professional education opportunities that open doors for soldiers in promising legitimate careers once they leave military service. A clear system of rewards and punishments specifically designed to deter collusion with criminal groups. More effective securing of military arsenals. Skills and external oversight leveraged through combined operations, to build cooperation among those sectors of the military that have successful and clean records in countering criminal groups, and to expose weaker forces to effective best practices.
Resumo:
In their article - Sales Promotion In Hotels: A British Perspective - by Francis Buttle, Lecturer, Department of Hotel, Restaurant, and Travel Administration, University of Massachusetts and Ini Akpabio, Property Manager, Trusthouse Forte, Britain, Buttle and Akpabio initially state: “Sales promotion in hotels is in its infancy. Other industries, particularly consumer goods manufacturing, have long recognized the contribution that sales promotion can make to the cost-effective achievement of marketing objectives. Sales promotion activities in hotels have remained largely uncharted. The authors define, identify and classify these hotel sales promotion activities to understand their function and form, and to highlight any scope for improvement.” The authors begin their discussion by attempting to define what the phrase sales promotion [SP] actually means. “The Institute of Sales Promotion regards sales promotions as “adding value, usually of a temporary nature, to a product or service in order to persuade the end user to purchase that particular brand as opposed to a competitive brand,” the authors offer. Williams, however, describes sales promotions more broadly as “short term tactical marketing tools which are used to achieve specific marketing objectives during a defined time period,” Buttle and Akpabio present with attribution. “The most significant difference between these two viewpoints is that Williams does not limit his definition to activities which are targeted at the consumer,” is their educated view. A lot of the discussion is centered on the differences in the collective marketing-promotional mix. “…it is not always easy to definitively categorize promotional activity,” Buttle and Akpabio say. “For example, in personal selling, a sales promotion such as a special bonus offer may be used to close the sale; an advertisement may be sales promotional in character in that it offers discounts.” Are promotion and marketing distinguishable as two separate entities? “…not only may there be conceptual confusion between components of the promotional mix, but there is sometimes a blurring of the boundaries between the elements of the marketing mix,” the authors suggest. “There are several reasons why SP is particularly suitable for use in hotels: seasonality, increasing competitiveness, asset characteristics, cost characteristics, increased use of channel intermediaries, new product launches, and deal proneness.” Buttle and Akpabio offer their insight on each of these segments. The authors also want you to know that SP customer applications are not the only game in town, SP trade applications are just as essential. Bonuses, enhanced commission rates, and vouchers are but a few examples of trade SP. The research for the article was compiled from several sources including, mail surveys, telephone surveys, personal interviews, trade magazines and newspapers; essentially in the U.K.
Tubular and sector heat pipes with interconnected branches for gas turbine and/or compressor cooling
Resumo:
Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system for many hot-gas-path components of the turbine. Heat pipe technology offers a possible cooling technique for the structures exposed to the high heat fluxes. Hence, the objective of this dissertation is to develop new radially rotating heat pipe systems that integrate multiple rotating miniature heat pipes with a common reservoir for a more effective and practical solution to turbine or compressor cooling. In this dissertation, two radially rotating miniature heat pipes and two sector heat pipes are analyzed and studied by utilizing suitable fluid flow and heat transfer modeling along with experimental tests. Analytical solutions for the film thickness and the lengthwise vapor temperature distribution for a single heat pipe are derived. Experimental tests on single radially rotating miniature heat pipes and sector heat pipes are undertaken with different important parameters and the manner in which these parameters affect heat pipe operation. Analytical and experimental studies have proven that the radially rotating miniature heat pipes have an incredibly high effective thermal conductance and an enormous heat transfer capability. Concurrently, the heat pipe has an uncomplicated structure and relatively low manufacturing costs. The heat pipe can also resist strong vibrations and is well suited for a high temperature environment. Hence, the heat pipes with a common reservoir make incorporation of heat pipes into turbo-machinery much more feasible and cost effective.
Resumo:
Providing transportation system operators and travelers with accurate travel time information allows them to make more informed decisions, yielding benefits for individual travelers and for the entire transportation system. Most existing advanced traveler information systems (ATIS) and advanced traffic management systems (ATMS) use instantaneous travel time values estimated based on the current measurements, assuming that traffic conditions remain constant in the near future. For more effective applications, it has been proposed that ATIS and ATMS should use travel times predicted for short-term future conditions rather than instantaneous travel times measured or estimated for current conditions. This dissertation research investigates short-term freeway travel time prediction using Dynamic Neural Networks (DNN) based on traffic detector data collected by radar traffic detectors installed along a freeway corridor. DNN comprises a class of neural networks that are particularly suitable for predicting variables like travel time, but has not been adequately investigated for this purpose. Before this investigation, it was necessary to identifying methods for data imputation to account for missing data usually encountered when collecting data using traffic detectors. It was also necessary to identify a method to estimate the travel time on the freeway corridor based on data collected using point traffic detectors. A new travel time estimation method referred to as the Piecewise Constant Acceleration Based (PCAB) method was developed and compared with other methods reported in the literatures. The results show that one of the simple travel time estimation methods (the average speed method) can work as well as the PCAB method, and both of them out-perform other methods. This study also compared the travel time prediction performance of three different DNN topologies with different memory setups. The results show that one DNN topology (the time-delay neural networks) out-performs the other two DNN topologies for the investigated prediction problem. This topology also performs slightly better than the simple multilayer perceptron (MLP) neural network topology that has been used in a number of previous studies for travel time prediction.
Resumo:
This study described teacher perceptions of TUPE program effectiveness in Florida in an attempt to determine whether teacher training or teachers' perceptions of tobacco norms may predict teacher amenability. A statewide survey provided information about how teachers' perceptions of program effectiveness are affected by variables such as: tobacco use norms, training variables, and classroom activities. Data were obtained from a telephone survey conducted in Florida as part of the Tobacco Pilot Project (TPP). The sample included 296 middle school teachers and 282 high school teachers as well as 193 middle school principals and 190 high school principals. Correlational and hierarchical regression analyses identified correlates and predictors of teachers' ratings of effectiveness. Results suggest that the more teachers support TUPE and believe it to be valuable and effective, the more likely those teachers are to implement TUPE classroom activities. In conclusion, higher amenability appears to be associated with more effective implementation of TUPE.
Tubular and Sector Heat Pipes with Interconnected Branches for Gas Turbine and/or Compressor Cooling
Resumo:
Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system for many hot-gas-path components of the turbine. Heat pipe technology offers a possible cooling technique for the structures exposed to the high heat fluxes. Hence, the objective of this dissertation is to develop new radially rotating heat pipe systems that integrate multiple rotating miniature heat pipes with a common reservoir for a more effective and practical solution to turbine or compressor cooling. In this dissertation, two radially rotating miniature heat pipes and two sector heat pipes are analyzed and studied by utilizing suitable fluid flow and heat transfer modeling along with experimental tests. Analytical solutions for the film thickness and the lengthwise vapor temperature distribution for a single heat pipe are derived. Experimental tests on single radially rotating miniature heat pipes and sector heat pipes are undertaken with different important parameters and the manner in which these parameters affect heat pipe operation. Analytical and experimental studies have proven that the radially rotating miniature heat pipes have an incredibly high effective thermal conductance and an enormous heat transfer capability. Concurrently, the heat pipe has an uncomplicated structure and relatively low manufacturing costs. The heat pipe can also resist strong vibrations and is well suited for a high temperature environment. Hence, the heat pipes with a common reservoir make incorporation of heat pipes into turbo-machinery much more feasible and cost effective.