4 resultados para lung disease
em Digital Commons at Florida International University
Resumo:
One in 3,000 people in the US are born with cystic fibrosis (CF), a genetic disorder affecting the reproductive system, pancreas, and lungs. Lung disease caused by chronic bacterial and fungal infections is the leading cause of morbidity and mortality in CF. Identities of the microbes are traditionally determined by culturing followed by phenotypic and biochemical assays. It was first thought that the bacterial infections were caused by a select handful of bacteria such as S. aureus, H. influenzae, B. cenocepacia, and P. aeruginosa. With the advent of PCR and molecular techniques, the polymicrobial nature of the CF lung became evident. The CF lung contains numerous bacteria and the communities are diverse and unique to each patient. The total complexity of the bacterial infections is still being determined. In addition, only a few members of the fungal communities have been identified. Much of the fungal community composition is still a mystery. This dissertation addresses this gap in knowledge. A snap shot of CF sputa bacterial community was obtained using the length heterogeneity-PCR community profiling technique. The profiles show that south Florida CF patients have a unique, diverse, and dynamic bacterial community which changes over time. The identities of the bacteria and fungi present were determined using the state-of-the-art 454 sequencing. Sequencing results show that the CF lung microbiome contains commonly cultured pathogenic bacteria, organisms considered a part of the healthy core biome, and novel organisms. Understanding the dynamic changes of these identified microbes will ultimately lead to better therapeutical interventions. Early detection is key in reducing the lung damage caused by chronic infections. Thus, there is a need for accurate and sensitive diagnostic tests. This issue was addressed by designing a bacterial diagnostic tool targeted towards CF pathogens using SPR. By identifying the organisms associated with the CF lung and understanding their community interactions, patients can receive better treatment and live longer.
Resumo:
Metagenomics is the culture-independent study of genetic material obtained directly from environmental samples. It has become a realistic approach to understanding microbial communities thanks to advances in high-throughput DNA sequencing technologies over the past decade. Current research has shown that different sites of the human body house varied bacterial communities. There is a strong correlation between an individual’s microbial community profile at a given site and disease. Metagenomics is being applied more often as a means of comparing microbial profiles in biomedical studies. The analysis of the data collected using metagenomics can be quite challenging and there exist a plethora of tools for interpreting the results. An automatic analytical workflow for metagenomic analyses has been implemented and tested using synthetic datasets of varying quality. It is able to accurately classify bacteria by taxa and correctly estimate the richness and diversity of each set. The workflow was then applied to the study of the airways microbiome in Chronic Obstructive Pulmonary Disease (COPD). COPD is a progressive lung disease resulting in narrowing of the airways and restricted airflow. Despite being the third leading cause of death in the United States, little is known about the differences in the lung microbial community profiles of healthy individuals and COPD patients. Bronchoalveolar lavage (BAL) samples were collected from COPD patients, active or ex-smokers, and never smokers and sequenced by 454 pyrosequencing. A total of 56 individuals were recruited for the study. Substantial colonization of the lungs was found in all subjects and differentially abundant genera in each group were identified. These discoveries are promising and may further our understanding of how the structure of the lung microbiome is modified as COPD progresses. It is also anticipated that the results will eventually lead to improved treatments for COPD.
Resumo:
One in 3,000 people in the US are born with cystic fibrosis (CF), a genetic disorder affecting the reproductive system, pancreas, and lungs. Lung disease caused by chronic bacterial and fungal infections is the leading cause of morbidity and mortality in CF. Identities of the microbes are traditionally determined by culturing followed by phenotypic and biochemical assays. It was first thought that the bacterial infections were caused by a select handful of bacteria such as S. aureus, H. influenzae, B. cenocepacia, and P. aeruginosa. With the advent of PCR and molecular techniques, the polymicrobial nature of the CF lung became evident. The CF lung contains numerous bacteria and the communities are diverse and unique to each patient. The total complexity of the bacterial infections is still being determined. In addition, only a few members of the fungal communities have been identified. Much of the fungal community composition is still a mystery. This dissertation addresses this gap in knowledge. A snap shot of CF sputa bacterial community was obtained using the length heterogeneity-PCR community profiling technique. The profiles show that south Florida CF patients have a unique, diverse, and dynamic bacterial community which changes over time. The identities of the bacteria and fungi present were determined using the state-of-the-art 454 sequencing. Sequencing results show that the CF lung microbiome contains commonly cultured pathogenic bacteria, organisms considered a part of the healthy core biome, and novel organisms. Understanding the dynamic changes of these identified microbes will ultimately lead to better therapeutical interventions. Early detection is key in reducing the lung damage caused by chronic infections. Thus, there is a need for accurate and sensitive diagnostic tests. This issue was addressed by designing a bacterial diagnostic tool targeted towards CF pathogens using SPR. By identifying the organisms associated with the CF lung and understanding their community interactions, patients can receive better treatment and live longer.
Resumo:
A report from the National Institutes of Health defines a disease biomarker as a “characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.” Early diagnosis is a crucial factor for incurable disease such as cancer and Alzheimer’s disease (AD). During the last decade researchers have discovered that biochemical changes caused by a disease can be detected considerably earlier as compared to physical manifestations/symptoms. In this dissertation electrochemical detection was utilized as the detection strategy as it offers high sensitivity/specificity, ease of operation, and capability of miniaturization and multiplexed detection. Electrochemical detection of biological analytes is an established field, and has matured at a rapid pace during the last 50 years and adapted itself to advances in micro/nanofabrication procedures. Carbon fiber microelectrodes were utilized as the platform sensor due to their high signal to noise ratio, ease and low-cost of fabrication, biocompatibility, and active carbon surface which allows conjugation with biorecognition moieties. This dissertation specifically focuses on the detection of 3 extensively validated biomarkers for cancer and AD. Firstly, vascular endothelial growth factor (VEGF) a cancer biomarker was detected using a one-step, reagentless immunosensing strategy. The immunosensing strategy allowed a rapid and sensitive means of VEGF detection with a detection limit of about 38 pg/mL with a linear dynamic range of 0–100 pg/mL. Direct detection of AD-related biomarker amyloid beta (Aβ) was achieved by exploiting its inherent electroactivity. The quantification of the ratio of Aβ1-40/42 (or Aβ ratio) has been established as a reliable test to diagnose AD through human clinical trials. Triple barrel carbon fiber microelectrodes were used to simultaneously detect Aβ1-40 and Aβ1-42 in cerebrospinal fluid from rats within a detection range of 100nM to 1.2μM and 400nM to 1μM respectively. In addition, the release of DNA damage/repair biomarker 8-hydroxydeoxyguanine (8-OHdG) under the influence of reactive oxidative stress from single lung endothelial cell was monitored using an activated carbon fiber microelectrode. The sensor was used to test the influence of nicotine, which is one of the most biologically active chemicals present in cigarette smoke and smokeless tobacco.