9 resultados para low-temperature epitaxy

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low temperature sintering has become a very important research area in ceramics processing and sintering as a promising process to obtain grain size below 100nm. For electronic ceramics, low temperature sintering is particularly difficult, because not only the required microstructure but also the desired electronic properties should be obtained. In this dissertation, the effect of liquid sintering aids and particle size (micrometer and nanometer) on sintering temperature and Positive Temperature Coefficient Resistivity (PTCR) property are investigated for Ba1-xSrxTiO3 (BST) doped with 0.2-0.3mol% Sb3+ (x = 0.1, 0.2, 0.3, 0.4 and 0.5). Different sintering aids with low melting point are used as sintering aids to decrease the sintering temperature for micrometer size BST particles. Micrometer size and nanometer size Ba1-xSrxTiO 3 (BST) particles are used to demonstrate the particle size effect on the sintering temperature for semiconducting BST. To reduce the sintering temperature, three processes are developed, i.e. 1 using sol-gel nanometer size Sb3+ doped powders with a sintering aid; 2 using micrometer size powders plus a sintering aid; and 3 using nanometer size Sb3+ doped powders with sintering aids. Grain size effect on PTCR characteristics is investigated through comparison between micrometer size powder sintered pellets and nanometer size powder sintered pellets. The former has lower resistivity at temperatures below the Curie temperature (Tc) and high resistivity at temperatures above the Curie temperature (Tc) along with higher ρ max/ρmin ratio (ρmax is the highest resistivity at temperatures above Tc, ρmin is the lowest resistivity at temperatures below Tc), whereas the latter has both higher ρ max and ρmin. Also, ρmax/ρmin is smaller than that of pellets with larger grain size. The reason is that the solid with small grain size has more grain boundaries than the solid with large grain size. The contribution z at room temperature and high temperature and a lower ρmax/ρmin ratio value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Miniature direct methanol fuel cells (DMFCs) are promising micro power sources for portable appliction. Low temperature cofired ceramic (LTCC), a competitive technology for current MEMS based fabrication, provides cost-effective mass manufacturing route for miniature DMFCs. Porous silver tape is adapted as electrodes to replace the traditional porous carbon electrodes due to its compatibility to LTCC processing and other electrochemical advantages. Electrochemical evaluation of silver under DMFCs operating conditions demonstrated that silver is a good electrode for DMFCs because of its reasonable corrosion resistance, low passivating current, and enhanced catalytic effect. Two catalyst loading methods (cofiring and postfiring) of the platinum and ruthenium catalysts are evaluated for LTCC based processing. The electrochemical analysis exhibits that the cofired path out-performs the postfiring path both at the anode and cathode. The reason is the formation of high surface area precipitated whiskers. Self-constraint sintering is utilized to overcome the difficulties of the large difference of coefficient of thermal expansion (CTE) between silver and LTCC (Dupont 951) tape during cofiring. The graphite sheet employed as a cavity fugitive insert guarantees cavity dimension conservation. Finally, performance of the membrane electrode assembly (MEA) with the porous silver electrode in the regular graphite electrode based cell and the integrated cofired cell is measured under passive fuel feeding condition. The MEA of the regular cell performs better as the electrode porosity and temperature increased. The power density of 10 mWcm-2 was obtained at ambient conditions with 1M methanol and it increased to 16 mWcm -2 at 50°C from an open circuit voltage of 0.58V. For the integrated prototype cell, the best performance, which depends on the balance methanol crossover and mass transfer at different temperatures and methanol concentrations, reaches 1.13 mWcm-2 at 2M methanol solution at ambient pressure. The porous media pore structure increases the methanol crossover resistance. As temperature increased to 60°C, the device increases to 2.14 mWcm-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen has been considered as a potentially efficient and environmentally friendly alternative energy solution. However, one of the most important scientific and technical challenges that the "hydrogen economy" faces is the development of safe and economically viable on-board hydrogen storage for fuel cell applications, especially to the transportation sector. Ammonia borane (BH3NH 3), a solid state hydrogen storage material, possesses exceptionally high hydrogen content (19.6 wt%).However, a fairly high temperature is required to release all the hydrogen atoms, along with the emission of toxic borazine. Recently research interests are focusing on the improvement of H2 discharge from ammonia borane (AB) including lowering the dehydrogenation temperature and enhancing hydrogen release rate using different techniques. Till now the detailed information about the bonding characteristics of AB is not sufficient to understand details about its phases and structures. ^ Elemental substitution of ammonia borane produces metal amidoboranes. Introduction of metal atoms to the ammonia borane structure may alter the bonding characteristics. Lithium amidoborane is synthesized by ball milling of ammonia borane and lithium hydride. High pressure study of molecular crystal provides unique insight into the intermolecular bonding forces and phase stability. During this dissertation, Raman spectroscopic study of lithium amidoborane has been carried out at high pressure in a diamond anvil cell. It has been identified that there is no dihydrogen bond in the lithium amidoborane structure, whereas dihydrogen bond is the characteristic bond of the parent compound ammonia borane. It has also been identified that the B-H bond becomes weaker, whereas B-N and N-H bonds become stronger than those in the parent compound ammonia borane. At high pressure up to 15 GPa, Raman spectroscopic study indicates two phase transformations of lithium amidoborane, whereas synchrotron X-ray diffraction data indicates only one phase transformation of this material. ^ Pressure and temperature has a significant effect on the structural stability of ammonia borane. This dissertation explored the phase transformation behavior of ammonia borane at high pressure and low temperature using in situ Raman spectroscopy. The P-T phase boundary between the tetragonal (I4mm) and orthorhombic (Pmn21) phases of ammonia borane has been determined. The transition has a positive Clapeyron slope which indicates the transition is of exothermic in nature. Influence of nanoconfinemment on the I4mm to Pmn2 1 phase transition of ammonia borane was also investigated. Mesoporus silica scaffolds SBA-15 with pore size of ~8 nm and MCM-41 with pore size of 2.1-2.7 nm, were used to nanoconfine ammonia borane. During cooling down, the I4mm to Pmn21 phase transition was not observed in MCM-41 nanoconfined ammonia borane, whereas the SBA-15 nanocondfined ammonia borane shows the phase transition at ~195 K. Four new phases of ammonia borane were also identified at high pressure up to 15 GPa and low temperature down to 90 K.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low temperature sintering has become a very important research area in ceramics processing and sintering as a promising process to obtain grain size below 100nm. For electronic ceramics, low temperature sintering is particularly difficult, because not only the required microstructure but also the desired electronic properties should be obtained. In this dissertation, the effect of liquid sintering aids and particle size (micrometer and nanometer) on sintering temperature and Positive Temperature Coefficient Resistivity (PTCR) property are investigated for Ba1-xSrxTiO3 (BST) doped with 0.2-0.3mol% Sb3+ (x = 0.1,0.2,0.3,0.4 and 0.5). Different sintering aids with low melting point are used as sintering aids to decrease the sintering temperature for micrometer size BST particles. Micrometer size and nanometer size Ba1-xSrxTiO3 (BST) particles are used to demonstrate the particle size effect on the sintering temperature for semiconducting BST. To reduce the sintering temperature, three processes are developed, i.e. 1 using sol-gel nanometer size Sb3+ doped powders with a sintering aid; 2 using micrometer size powders plus a sintering aid; and 3 using nanometer size Sb3+ doped powders with sintering aids. Grain size effect on PTCR characteristics is investigated through comparison between micrometer size powder sintered pellets and nanometer size powder sintered pellets. The former has lower resistivity at temperatures below the Curie temperature (Tc) and high resistivity at temperatures above the Curie temperature (Tc) along with higher ñmax/ñmin ratio (ñmax is the highest resistivity at temperatures above Tc, ñmin is the lowest resistivity at temperatures below Tc), whereas the latter has both higher ñmax and ñmin. Also, ñmax/ñmin is smaller than that of pellets with larger grain size. The reason is that the solid with small grain size has more grain boundaries than the solid with large grain size. The contribution z at room temperature and high temperature and a lower ñmax/ñmin ratio value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased device density, switching speeds of integrated circuits and decrease in package size is placing new demands for high power thermal-management. The convectional method of forced air cooling with passive heat sink can handle heat fluxes up-to 3-5W/cm2; however current microprocessors are operating at levels of 100W/cm2, This demands the usage of novel thermal-management systems. In this work, water-cooling systems with active heat sink are embedded in the substrate. The research involved fabricating LTCC substrates of various configurations - an open-duct substrate, the second with thermal vias and the third with thermal vias and free-standing metal columns and metal foil. Thermal testing was performed experimentally and these results are compared with CFD results. An overall thermal resistance for the base substrate is demonstrated to be 3.4oC/W-cm2. Addition of thermal vias reduces the effective resistance of the system by 7times and further addition of free standing columns reduced it by 20times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen has been considered as a potentially efficient and environmentally friendly alternative energy solution. However, one of the most important scientific and technical challenges that the “hydrogen economy” faces is the development of safe and economically viable on-board hydrogen storage for fuel cell applications, especially to the transportation sector. Ammonia borane (BH3NH3), a solid state hydrogen storage material, possesses exceptionally high hydrogen content (19.6 wt%).However, a fairly high temperature is required to release all the hydrogen atoms, along with the emission of toxic borazine. Recently research interests are focusing on the improvement of H2 discharge from ammonia borane (AB) including lowering the dehydrogenation temperature and enhancing hydrogen release rate using different techniques. Till now the detailed information about the bonding characteristics of AB is not sufficient to understand details about its phases and structures. Elemental substitution of ammonia borane produces metal amidoboranes. Introduction of metal atoms to the ammonia borane structure may alter the bonding characteristics. Lithium amidoborane is synthesized by ball milling of ammonia borane and lithium hydride. High pressure study of molecular crystal provides unique insight into the intermolecular bonding forces and phase stability. During this dissertation, Raman spectroscopic study of lithium amidoborane has been carried out at high pressure in a diamond anvil cell. It has been identified that there is no dihydrogen bond in the lithium amidoborane structure, whereas dihydrogen bond is the characteristic bond of the parent compound ammonia borane. It has also been identified that the B-H bond becomes weaker, whereas B-N and N-H bonds become stronger than those in the parent compound ammonia borane. At high pressure up to 15 GPa, Raman spectroscopic study indicates two phase transformations of lithium amidoborane, whereas synchrotron X-ray diffraction data indicates only one phase transformation of this material. Pressure and temperature has a significant effect on the structural stability of ammonia borane. This dissertation explored the phase transformation behavior of ammonia borane at high pressure and low temperature using in situ Raman spectroscopy. The P-T phase boundary between the tetragonal (I4mm) and orthorhombic (Pmn21) phases of ammonia borane has been determined. The transition has a positive Clapeyron slope which indicates the transition is of exothermic in nature. Influence of nanoconfinemment on the I4mm to Pmn21 phase transition of ammonia borane was also investigated. Mesoporus silica scaffolds SBA-15 with pore size of ~8 nm and MCM-41 with pore size of 2.1-2.7 nm, were used to nanoconfine ammonia borane. During cooling down, the I4mm to Pmn21 phase transition was not observed in MCM-41 nanoconfined ammonia borane, whereas the SBA-15 nanocondfined ammonia borane shows the phase transition at ~195 K. Four new phases of ammonia borane were also identified at high pressure up to 15 GPa and low temperature down to 90 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design, construction and optimization of a low power-high temperature heated ceramic sensor to detect leaking of halogen gases in refrigeration systems are presented. The manufacturing process was done with microelectronic assembly and the Low Temperature Cofire Ceramic (LTCC) technique. Four basic sensor materials were fabricated and tested: Li2SiO3, Na2SiO3, K2SiO3, and CaSiO 3. The evaluation of the sensor material, sensor size, operating temperature, bias voltage, electrodes size, firing temperature, gas flow, and sensor life was done. All sensors responded to the gas showing stability and reproducibility. Before exposing the sensor to the gas, the sensor was modeled like a resistor in series and the calculations obtained were in agreement with the experimental values. The sensor response to the gas was divided in surface diffusion and bulk diffusion; both were analyzed showing agreement between the calculations and the experimental values. The sensor with 51.5%CaSiO3 + 48.5%Li 2SiO3 shows the best results, including a stable current and response to the gas. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design, construction and optimization of a low power-high temperature heated ceramic sensor to detect leaking of halogen gases in refrigeration systems are presented. The manufacturing process was done with microelectronic assembly and the Low Temperature Cofire Ceramic (LTCC) technique. Four basic sensor materials were fabricated and tested: Li2SiO3, Na2SiO3, K2SiO3, and CaSiO3. The evaluation of the sensor material, sensor size, operating temperature, bias voltage, electrodes size, firing temperature, gas flow, and sensor life was done. All sensors responded to the gas showing stability and reproducibility. Before exposing the sensor to the gas, the sensor was modeled like a resistor in series and the calculations obtained were in agreement with the experimental values. The sensor response to the gas was divided in surface diffusion and bulk diffusion; both were analyzed showing agreement between the calculations and the experimental values. The sensor with 51.5%CaSiO3 + 48.5%Li2SiO3 shows the best results, including a stable current and response to the gas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A two-phase three-dimensional computational model of an intermediate temperature (120--190°C) proton exchange membrane (PEM) fuel cell is presented. This represents the first attempt to model PEM fuel cells employing intermediate temperature membranes, in this case, phosphoric acid doped polybenzimidazole (PBI). To date, mathematical modeling of PEM fuel cells has been restricted to low temperature operation, especially to those employing Nafion ® membranes; while research on PBI as an intermediate temperature membrane has been solely at the experimental level. This work is an advancement in the state of the art of both these fields of research. With a growing trend toward higher temperature operation of PEM fuel cells, mathematical modeling of such systems is necessary to help hasten the development of the technology and highlight areas where research should be focused.^ This mathematical model accounted for all the major transport and polarization processes occurring inside the fuel cell, including the two phase phenomenon of gas dissolution in the polymer electrolyte. Results were presented for polarization performance, flux distributions, concentration variations in both the gaseous and aqueous phases, and temperature variations for various heat management strategies. The model predictions matched well with published experimental data, and were self-consistent.^ The major finding of this research was that, due to the transport limitations imposed by the use of phosphoric acid as a doping agent, namely low solubility and diffusivity of dissolved gases and anion adsorption onto catalyst sites, the catalyst utilization is very low (∼1--2%). Significant cost savings were predicted with the use of advanced catalyst deposition techniques that would greatly reduce the eventual thickness of the catalyst layer, and subsequently improve catalyst utilization. The model also predicted that an increase in power output in the order of 50% is expected if alternative doping agents to phosphoric acid can be found, which afford better transport properties of dissolved gases, reduced anion adsorption onto catalyst sites, and which maintain stability and conductive properties at elevated temperatures.^