3 resultados para low noise amplifier (LNA)

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advantages and popularity of Permanent Magnet (PM) motors due to their high power density, there is an increasing incentive to use them in variety of applications including electric actuation. These applications have strict noise emission standards. The generation of audible noise and associated vibration modes are characteristics of all electric motors, it is especially problematic in low speed sensorless control rotary actuation applications using high frequency voltage injection technique. This dissertation is aimed at solving the problem of optimizing the sensorless control algorithm for low noise and vibration while achieving at least 12 bit absolute accuracy for speed and position control. The low speed sensorless algorithm is simulated using an improved Phase Variable Model, developed and implemented in a hardware-in-the-loop prototyping environment. Two experimental testbeds were developed and built to test and verify the algorithm in real time.^ A neural network based modeling approach was used to predict the audible noise due to the high frequency injected carrier signal. This model was created based on noise measurements in an especially built chamber. The developed noise model is then integrated into the high frequency based sensorless control scheme so that appropriate tradeoffs and mitigation techniques can be devised. This will improve the position estimation and control performance while keeping the noise below a certain level. Genetic algorithms were used for including the noise optimization parameters into the developed control algorithm.^ A novel wavelet based filtering approach was proposed in this dissertation for the sensorless control algorithm at low speed. This novel filter was capable of extracting the position information at low values of injection voltage where conventional filters fail. This filtering approach can be used in practice to reduce the injected voltage in sensorless control algorithm resulting in significant reduction of noise and vibration.^ Online optimization of sensorless position estimation algorithm was performed to reduce vibration and to improve the position estimation performance. The results obtained are important and represent original contributions that can be helpful in choosing optimal parameters for sensorless control algorithm in many practical applications.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of eliminating extraneous sound and light on students’ achievement was investigated under four conditions: Light and Sound controlled, Sound Only controlled, Light Only controlled and neither Light nor Sound controlled. Group, age and gender were the control variables. Four randomly selected groups of high school freshmen students with different backgrounds were the participants in this study. Academic achievement was the dependent variable measured on a pretest, a posttest and a post-posttest, each separated by an interval of 15 days. ANOVA was used to test the various hypotheses related to the impact of eliminating sound and light on student learning. Independent sample T tests on the effect of gender indicated a significant effect while age was non- significant. Follow up analysis indicated that sound and light are not potential sources of extraneous load when tested individually. However, the combined effect of sound and light seems to be a potential source of extrinsic load. The findings revealed that the performance of the Sound and Light controlled group was greater during the posttest and post-posttest. The overall performance of boys was greater than that of girls. Results indicated a significant interaction effect between group and gender on treatment subjects. However gender alone was non-significant. Performance of group by age had no significant interaction and age alone was non-significant in the posttest and post-posttest. Based on the results obtained sound and light combined seemed to be the potential sources of extraneous load in this type of learning environment. This finding supports previous research on the effect of sound and light on learning. The findings of this study show that extraneous sound and light have an impact on learning. These findings can be used to design better learning environments. Such environments can be achieved with different electric lighting and sound systems that provide optimal color rendering, low glare, low flicker, low noise and reverberation. These environments will help people avoid unwanted distraction, drowsiness, and photosensitive behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary purpose of this thesis was to present a theoretical large-signal analysis to study the power gain and efficiency of a microwave power amplifier for LS-band communications using software simulation. Power gain, efficiency, reliability, and stability are important characteristics in the power amplifier design process. These characteristics affect advance wireless systems, which require low-cost device amplification without sacrificing system performance. Large-signal modeling and input and output matching components are used for this thesis. Motorola's Electro Thermal LDMOS model is a new transistor model that includes self-heating affects and is capable of small-large signal simulations. It allows for most of the design considerations to be on stability, power gain, bandwidth, and DC requirements. The matching technique allows for the gain to be maximized at a specific target frequency. Calculations and simulations for the microwave power amplifier design were performed using Matlab and Microwave Office respectively. Microwave Office is the simulation software used in this thesis. The study demonstrated that Motorola's Electro Thermal LDMOS transistor in microwave power amplifier design process is a viable solution for common-source amplifier applications in high power base stations. The MET-LDMOS met the stability requirements for the specified frequency range without a stability-improvement model. The power gain of the amplifier circuit was improved through proper microwave matching design using input/output-matching techniques. The gain and efficiency of the amplifier improve approximately 4dB and 7.27% respectively. The gain value is roughly .89 dB higher than the maximum gain specified by the MRF21010 data sheet specifications. This work can lead to efficient modeling and development of high power LDMOS transistor implementations in commercial and industry applications.