2 resultados para local iterated function systems
em Digital Commons at Florida International University
Resumo:
Property taxes serve as a vital revenue source for local governments. The revenues derived from the property tax function as the primary funding source for a variety of critical local public service systems. Property tax appeal systems serve as quasi-administrative-judicial mechanisms intended to assure the public that property tax assessments are correct, fair, and equitable. Despite these important functions, there is a paucity of empirical research related to property tax appeal systems. This study contributes to property tax literature by identifying who participates in the property tax appeal process and examining their motivations for participation. In addition, the study sought to determine whether patterns of use and success in appeal systems affected the distribution of the tax burden. Data were collected by means of a survey distributed to single-family property owners from two Florida counties. In addition, state and county documents were analyzed to determine appeal patterns and examine the impact on assessment uniformity, over a three-year period. The survey data provided contextual evidence that single-family property owners are not as troubled by property taxes as they are by the conduct of local government officials. The analyses of the decision to appeal indicated that more expensive properties and properties excluded from initial uniformity analyses were more likely to be appealed, while properties with homestead exemptions were less likely to be appealed. The value change analyses indicated that appeals are clustered in certain geographical areas; however, these areas do not always experience a greater percentage of the value changes. Interestingly, professional representation did not increase the probability of obtaining a reduction in value. Other relationships between the variables were discovered, but often with weak predictive ability. Findings from the assessment uniformity analyses were also interesting. The results indicated that the appeals mechanisms in both counties improved assessment uniformity. On average, appealed properties exhibited greater horizontal and vertical inequities, as compared to non-appealed properties, prior to the appeals process. After, the appeal process was completed; the indicators of horizontal and vertical equity were largely improved. However, there were some indications of regressivity in the final year of the study.
Resumo:
Freeway systems are becoming more congested each day. One contribution to freeway traffic congestion comprises platoons of on-ramp traffic merging into freeway mainlines. As a relatively low-cost countermeasure to the problem, ramp meters are being deployed in both directions of an 11-mile section of I-95 in Miami-Dade County, Florida. The local Fuzzy Logic (FL) ramp metering algorithm implemented in Seattle, Washington, has been selected for deployment. The FL ramp metering algorithm is powered by the Fuzzy Logic Controller (FLC). The FLC depends on a series of parameters that can significantly alter the behavior of the controller, thus affecting the performance of ramp meters. However, the most suitable values for these parameters are often difficult to determine, as they vary with current traffic conditions. Thus, for optimum performance, the parameter values must be fine-tuned. This research presents a new method of fine tuning the FLC parameters using Particle Swarm Optimization (PSO). PSO attempts to optimize several important parameters of the FLC. The objective function of the optimization model incorporates the METANET macroscopic traffic flow model to minimize delay time, subject to the constraints of reasonable ranges of ramp metering rates and FLC parameters. To further improve the performance, a short-term traffic forecasting module using a discrete Kalman filter was incorporated to predict the downstream freeway mainline occupancy. This helps to detect the presence of downstream bottlenecks. The CORSIM microscopic simulation model was selected as the platform to evaluate the performance of the proposed PSO tuning strategy. The ramp-metering algorithm incorporating the tuning strategy was implemented using CORSIM's run-time extension (RTE) and was tested on the aforementioned I-95 corridor. The performance of the FLC with PSO tuning was compared with the performance of the existing FLC without PSO tuning. The results show that the FLC with PSO tuning outperforms the existing FL metering, fixed-time metering, and existing conditions without metering in terms of total travel time savings, average speed, and system-wide throughput.